【深度学习系列】PaddlePaddle之手写数字识别
- CPU版本安装
pip install paddlepaddle
- GPU版本安装
pip install paddlepaddle-gpu
导入数据---->定义网络结构---->训练模型---->保存模型---->测试结果
#coding:utf-8
import os
from PIL import Image
import numpy as np
import paddle.v2 as paddle # 设置是否用gpu,0为否,1为是
with_gpu = os.getenv('WITH_GPU', '') != '' # 定义网络结构
def convolutional_neural_network_org(img):
# 第一层卷积层
conv_pool_1 = paddle.networks.simple_img_conv_pool(
input=img,
filter_size=5,
num_filters=20,
num_channel=1,
pool_size=2,
pool_stride=2,
act=paddle.activation.Relu())
# 第二层卷积层
conv_pool_2 = paddle.networks.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
num_channel=20,
pool_size=2,
pool_stride=2,
act=paddle.activation.Relu())
# 全连接层
predict = paddle.layer.fc(
input=conv_pool_2, size=10, act=paddle.activation.Softmax())
return predict def main():
# 初始化定义跑模型的设备
paddle.init(use_gpu=with_gpu, trainer_count=1) # 读取数据
images = paddle.layer.data(
name='pixel', type=paddle.data_type.dense_vector(784))
label = paddle.layer.data(
name='label', type=paddle.data_type.integer_value(10)) # 调用之前定义的网络结构
predict = convolutional_neural_network_org(images) # 定义损失函数
cost = paddle.layer.classification_cost(input=predict, label=label) # 指定训练相关的参数
parameters = paddle.parameters.create(cost) # 定义训练方法
optimizer = paddle.optimizer.Momentum(
learning_rate=0.1 / 128.0,
momentum=0.9,
regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128)) # 训练模型
trainer = paddle.trainer.SGD(
cost=cost, parameters=parameters, update_equation=optimizer) lists = [] # 定义event_handler,输出训练过程中的结果
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
if isinstance(event, paddle.event.EndPass):
# 保存参数
with open('params_pass_%d.tar' % event.pass_id, 'w') as f:
parameters.to_tar(f) result = trainer.test(reader=paddle.batch(
paddle.dataset.mnist.test(), batch_size=128))
print "Test with Pass %d, Cost %f, %s\n" % (
event.pass_id, result.cost, result.metrics)
lists.append((event.pass_id, result.cost,
result.metrics['classification_error_evaluator'])) trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(paddle.dataset.mnist.train(), buf_size=8192),
batch_size=128),
event_handler=event_handler,
num_passes=10) # 找到训练误差最小的一次结果
best = sorted(lists, key=lambda list: float(list[1]))[0]
print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])
print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100) # 加载数据
def load_image(file):
im = Image.open(file).convert('L')
im = im.resize((28, 28), Image.ANTIALIAS)
im = np.array(im).astype(np.float32).flatten()
im = im / 255.0
return im # 测试结果
test_data = []
cur_dir = os.path.dirname(os.path.realpath(__file__))
test_data.append((load_image(cur_dir + '/image/infer_3.png'), )) probs = paddle.infer(
output_layer=predict, parameters=parameters, input=test_data)
lab = np.argsort(-probs) # probs and lab are the results of one batch data
print "Label of image/infer_3.png is: %d" % lab[0][0] if __name__ == '__main__':
main()
上面的代码看起来很长,但结构还是很清楚的。下面我们用实际数据测试一下,看一下效果到底怎么样~
def convolutional_neural_network_org(img):
# 第一层卷积层
conv_pool_1 = paddle.networks.simple_img_conv_pool(
input=img,
filter_size=5,
num_filters=20,
num_channel=1,
pool_size=2,
pool_stride=2,
act=paddle.activation.Relu())
# 第二层卷积层
conv_pool_2 = paddle.networks.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
num_channel=20,
pool_size=2,
pool_stride=2,
act=paddle.activation.Relu())
# 全连接层
predict = paddle.layer.fc(
input=conv_pool_2, size=10, act=paddle.activation.Softmax())
return predict
输出结果如下:
I1023 13:45:46.519075 34144 Util.cpp:166] commandline: --use_gpu=True --trainer_count=1
[INFO 2017-10-23 13:45:52,667 layers.py:2539] output for __conv_pool_0___conv: c = 20, h = 24, w = 24, size = 11520
[INFO 2017-10-23 13:45:52,667 layers.py:2667] output for __conv_pool_0___pool: c = 20, h = 12, w = 12, size = 2880
[INFO 2017-10-23 13:45:52,668 layers.py:2539] output for __conv_pool_1___conv: c = 50, h = 8, w = 8, size = 3200
[INFO 2017-10-23 13:45:52,669 layers.py:2667] output for __conv_pool_1___pool: c = 50, h = 4, w = 4, size = 800
I1023 13:45:52.675750 34144 GradientMachine.cpp:85] Initing parameters..
I1023 13:45:52.686153 34144 GradientMachine.cpp:92] Init parameters done.
Pass 0, Batch 0, Cost 3.048408, {'classification_error_evaluator': 0.890625}
Pass 0, Batch 100, Cost 0.188828, {'classification_error_evaluator': 0.0546875}
Pass 0, Batch 200, Cost 0.075183, {'classification_error_evaluator': 0.015625}
Pass 0, Batch 300, Cost 0.070798, {'classification_error_evaluator': 0.015625}
Pass 0, Batch 400, Cost 0.079673, {'classification_error_evaluator': 0.046875}
Test with Pass 0, Cost 0.074587, {'classification_error_evaluator': 0.023800000548362732}
```
```
```
Pass 4, Batch 0, Cost 0.032454, {'classification_error_evaluator': 0.015625}
Pass 4, Batch 100, Cost 0.021028, {'classification_error_evaluator': 0.0078125}
Pass 4, Batch 200, Cost 0.020458, {'classification_error_evaluator': 0.0}
Pass 4, Batch 300, Cost 0.046728, {'classification_error_evaluator': 0.015625}
Pass 4, Batch 400, Cost 0.030264, {'classification_error_evaluator': 0.015625}
Test with Pass 4, Cost 0.035841, {'classification_error_evaluator': 0.01209999993443489} Best pass is 4, testing Avgcost is 0.0358410408473
The classification accuracy is 98.79%
Label of image/infer_3.png is: 3 real 0m31.565s
user 0m20.996s
sys 0m15.891s
可以看到,第一行输出选择的设备是否是gpu,这里我选择的是gpu,所以等于1,如果是cpu,就是0。接下来四行输出的是网络结构,然后开始输出训练结果,训练结束,我们把这几次迭代中误差最小的结果输出来,98.79%,效果还是很不错的,毕竟只迭代了5次。最后看一下输出时间,非常快,约31秒。然而这个结果我并不是特别满意,因为之前用keras做的时候调整的网络模型训练往后准确率能够达到99.72%,不过速度非常慢,迭代69次大概需要30分钟左右,所以我觉得这个网络结构还是可以改进一下的,所以我对这个网络结构改进了一下,请看改进版
改进版
def convolutional_neural_network(img):
# 第一层卷积层
conv_pool_1 = paddle.networks.simple_img_conv_pool(
input=img,
filter_size=5,
num_filters=20,
num_channel=1,
pool_size=2,
pool_stride=2,
act=paddle.activation.Relu())
# 加一层dropout层
drop_1 = paddle.layer.dropout(input=conv_pool_1, dropout_rate=0.2)
# 第二层卷积层
conv_pool_2 = paddle.networks.simple_img_conv_pool(
input=drop_1,
filter_size=5,
num_filters=50,
num_channel=20,
pool_size=2,
pool_stride=2,
act=paddle.activation.Relu())
# 加一层dropout层
drop_2 = paddle.layer.dropout(input=conv_pool_2, dropout_rate=0.5)
# 全连接层
fc1 = paddle.layer.fc(input=drop_2, size=10, act=paddle.activation.Linear())
bn = paddle.layer.batch_norm(input=fc1,act=paddle.activation.Relu(),
layer_attr=paddle.attr.Extra(drop_rate=0.2))
predict = paddle.layer.fc(input=bn, size=10, act=paddle.activation.Softmax())
return predict
在改进版里我们加了一些dropout层来避免过拟合。分别在第一层卷积层和第二层卷积层后加了dropout,阈值设为0.5。改变网络结构也非常简单,直接在定义的网络结构函数里对模型进行修改即可,这一点其实和keras的网络结构定义方式还是挺像的,易用性很高。下面来看看效果:
I1023 14:01:51.653827 34244 Util.cpp:166] commandline: --use_gpu=True --trainer_count=1
[INFO 2017-10-23 14:01:57,830 layers.py:2539] output for __conv_pool_0___conv: c = 20, h = 24, w = 24, size = 11520
[INFO 2017-10-23 14:01:57,831 layers.py:2667] output for __conv_pool_0___pool: c = 20, h = 12, w = 12, size = 2880
[INFO 2017-10-23 14:01:57,832 layers.py:2539] output for __conv_pool_1___conv: c = 50, h = 8, w = 8, size = 3200
[INFO 2017-10-23 14:01:57,833 layers.py:2667] output for __conv_pool_1___pool: c = 50, h = 4, w = 4, size = 800
I1023 14:01:57.842871 34244 GradientMachine.cpp:85] Initing parameters..
I1023 14:01:57.854014 34244 GradientMachine.cpp:92] Init parameters done.
Pass 0, Batch 0, Cost 2.536199, {'classification_error_evaluator': 0.875}
Pass 0, Batch 100, Cost 1.668236, {'classification_error_evaluator': 0.515625}
Pass 0, Batch 200, Cost 1.024846, {'classification_error_evaluator': 0.375}
Pass 0, Batch 300, Cost 1.086315, {'classification_error_evaluator': 0.46875}
Pass 0, Batch 400, Cost 0.767804, {'classification_error_evaluator': 0.25}
Pass 0, Batch 500, Cost 0.545784, {'classification_error_evaluator': 0.1875}
Pass 0, Batch 600, Cost 0.731662, {'classification_error_evaluator': 0.328125}
```
```
```
Pass 49, Batch 0, Cost 0.415184, {'classification_error_evaluator': 0.09375}
Pass 49, Batch 100, Cost 0.067616, {'classification_error_evaluator': 0.0}
Pass 49, Batch 200, Cost 0.161415, {'classification_error_evaluator': 0.046875}
Pass 49, Batch 300, Cost 0.202667, {'classification_error_evaluator': 0.046875}
Pass 49, Batch 400, Cost 0.336043, {'classification_error_evaluator': 0.140625}
Pass 49, Batch 500, Cost 0.290948, {'classification_error_evaluator': 0.125}
Pass 49, Batch 600, Cost 0.223433, {'classification_error_evaluator': 0.109375}
Pass 49, Batch 700, Cost 0.217345, {'classification_error_evaluator': 0.0625}
Pass 49, Batch 800, Cost 0.163140, {'classification_error_evaluator': 0.046875}
Pass 49, Batch 900, Cost 0.203645, {'classification_error_evaluator': 0.078125}
Test with Pass 49, Cost 0.033639, {'classification_error_evaluator': 0.008100000210106373} Best pass is 48, testing Avgcost is 0.0313018567383
The classification accuracy is 99.28%
Label of image/infer_3.png is: 3 real 5m3.151s
user 4m0.052s
sys 1m8.084s
【深度学习系列】PaddlePaddle之手写数字识别的更多相关文章
- NN:利用深度学习之神经网络实现手写数字识别(数据集50000张图片)—Jason niu
import mnist_loader import network training_data, validation_data, test_data = mnist_loader.load_dat ...
- TensorFlow 卷积神经网络手写数字识别数据集介绍
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池 ...
- 实现手写数字识别(数据集50000张图片)比较3种算法神经网络、灰度平均值、SVM各自的准确率—Jason niu
对手写数据集50000张图片实现阿拉伯数字0~9识别,并且对结果进行分析准确率, 手写数字数据集下载:http://yann.lecun.com/exdb/mnist/ 首先,利用图片本身的属性,图片 ...
- 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...
- 【PaddlePaddle系列】手写数字识别
最近百度为了推广自家编写对深度学习框架PaddlePaddle不断推出各种比赛.百度声称PaddlePaddle是一个“易学.易用”的开源深度学习框架,然而网上的资料少之又少.虽然百度很用心地提供 ...
- 深度学习之 mnist 手写数字识别
深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from ...
- 深度学习之PyTorch实战(3)——实战手写数字识别
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...
- 用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别
用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学 ...
- 深度学习面试题12:LeNet(手写数字识别)
目录 神经网络的卷积.池化.拉伸 LeNet网络结构 LeNet在MNIST数据集上应用 参考资料 LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务.自那时起 ...
随机推荐
- 201521123059 《Java程序设计》第三周学习总结
1. 本周学习总结 2. 书面作业 1.代码阅读 public class Test1 { private int i = 1;//这行不能修改 private static int j = 2; p ...
- MultipleOutputs新旧api
package MRNB_V4; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.con ...
- Linux Ubuntu从零开始部署web环境及项目-----搭建ssh环境(一)
linux搭建ssh环境 1,用户登录 成功输入用户名和密码后 进入Ubuntu界面 2,配置网络 参考:http://blog.csdn.net/liu782726344/article/deta ...
- multimap 和priority_queue详解
上一期是关于STL和并查集结合的例题,也附了STL中部分容器的使用摘要,由于是从网上东拼西凑的,感觉有的关键点还是没解释清楚,现在从其中摘出两个容器,用例题对它们的用法进行进一步解释. 以下是例题的介 ...
- oc __weak和__strong的区别
1.先上代码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 id __weak obj=[[NSObject alloc]init]; NSLog(@"弱引 ...
- IOS SDWebImage实现基本原理详解(转载)
1)当我门需要获取网络图片的时候,我们首先需要的便是URl没有URl什么都没有,获得URL后我们SDWebImage实现的并不是直接去请求网路,而是检查图片缓存中有没有和URl相关的图片,如果有则直接 ...
- AngularJS -- HTML 编译器
点击查看AngularJS系列目录 转载请注明出处:http://www.cnblogs.com/leosx/ HTML Compiler Overview(HTML 编译器 概要) AngularJ ...
- D - DZY Loves Hash CodeForces - 447A
DZY has a hash table with p buckets, numbered from 0 to p - 1. He wants to insert n numbers, in the ...
- Linux入门之常用命令(13) date
在linux shell编程中,经常用到日期的加减运算 以前都是自己通过expr函数计算,很麻烦 其实date命令本身提供了日期的加减运算 非常方便.例如:得到昨天的时间date +%Y%m%d -- ...
- 【笔记】Kali linux的安装 和 一些使用前的准备工作(原创+转载)
该博文只记录笔者的蛇皮使用经历,纯新手= =,可能借鉴意义也可能没有(T _ T),侵删. 目录 kali linux 在个人计算机和在VirtualBox下的安装 kali linux 使用前准备工 ...