Supervised Learning

In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.

Supervised learning problems are categorized into "regression" and "classification" problems. In a regression problem, we are trying to predict results within a continuous output, meaning that we are trying to map input variables to some continuous function. In a classification problem, we are instead trying to predict results in a discrete output. In other words, we are trying to map input variables into discrete categories.

Example 1:

Given data about the size of houses on the real estate market, try to predict their price. Price as a function of size is a continuous output, so this is a regression problem.

We could turn this example into a classification problem by instead making our output about whether the house "sells for more or less than the asking price." Here we are classifying the houses based on price into two discrete categories.

Example 2:

(a) Regression - Given a picture of a person, we have to predict their age on the basis of the given picture

(b) Classification - Given a patient with a tumor, we have to predict whether the tumor is malignant or benign.

Unsupervised Learning

Unsupervised learning allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables.

We can derive this structure by clustering the data based on relationships among the variables in the data.

With unsupervised learning there is no feedback based on the prediction results.

Example:

Clustering: Take a collection of 1,000,000 different genes, and find a way to automatically group these genes into groups that are somehow similar or related by different variables, such as lifespan, location, roles, and so on.

Non-clustering: The "Cocktail Party Algorithm", allows you to find structure in a chaotic environment. (i.e. identifying individual voices and music from a mesh of sounds at a cocktail party).

Supervised Learning and Unsupervised Learning的更多相关文章

  1. What is the difference between supervised learning and unsupervised learning?

    Machine Learning is a class of algorithms which is data-driven, i.e. unlike "normal" algor ...

  2. (转)Predictive learning vs. representation learning 预测学习 与 表示学习

    Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, ...

  3. supervised learning|unsupervised learning

    监督学习即是supervised learning,原始数据中有每个数据有自己的数据结构同时有标签,用于classify,机器learn的是判定规则,通过已成熟的数据training model达到判 ...

  4. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  5. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  6. Unsupervised Learning: Use Cases

    Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...

  7. 转:无监督特征学习——Unsupervised feature learning and deep learning

    http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio clas ...

  8. 131.005 Unsupervised Learning - Cluster | 非监督学习 - 聚类

    @(131 - Machine Learning | 机器学习) 零. Goal How Unsupervised Learning fills in that model gap from the ...

  9. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

随机推荐

  1. [13] static 和 final

    不论是类.属性,还是方法的声明中,都有一个可设置的"修饰符",它可以实现一些高级特性. 1.static static被称之为静态的,并不是指不可以修改的意思,而是说它的内存空间是 ...

  2. iOS开发之UITableView中计时器的几种实现方式(NSTimer、DispatchSource、CADisplayLink)

    最近工作比较忙,但是还是出来更新博客了.今天博客中所涉及的内容并不复杂,都是一些平时常见的一些问题,通过这篇博客算是对UITableView中使用定时器的几种方式进行总结.本篇博客会给出在TableV ...

  3. Apache Spark 2.2.0 中文文档 - 集群模式概述 | ApacheCN

    集群模式概述 该文档给出了 Spark 如何在集群上运行.使之更容易来理解所涉及到的组件的简短概述.通过阅读 应用提交指南 来学习关于在集群上启动应用. 组件 Spark 应用在集群上作为独立的进程组 ...

  4. struts2---自定义类型转换器

    从servlet我们知道从页面获取到的参数都是string类型,但是struts2中基本的数据类型,它可以自动帮我们转化为其对应的包装类,就像获取到123,可以自动转化为Integer,但是比如201 ...

  5. HDFS源码分析之NameNode(3)————RpcServer

    NameNodeRpcServer implements NamenodeProtocols NameNode支持核心即NameNodeRpcServer 实现ClientProtocol  支持客户 ...

  6. U盘中毒无限蓝屏重启的解决办法

    开门见山,这个帖子只针对U盘中毒导致的以下两种症状: 1.win10系统无法进入并且要求初始化,卸载所有第三方应用 2.win7系统无限蓝屏重启): 其他的硬件故障不在本次讨论范围之内. 说明以下.上 ...

  7. java异步线程池同时请求多个接口数据

    一.主要使用类 . ExecutorService java线程池类 申明方式:ExecutorService exc = Executors.newFixedThreadPool(requestPa ...

  8. thinkphp增删改查

    添加数据: (添加单行数据) // 添加成功返回1,失败返回0 (添加多行数据) // 返回添加数据的条数 删除数据: 修改数据: (修改单个字段) (修改多个字段) // 修改成功返回1,失败返回0 ...

  9. WordPress-基础设置之常规设置

    对于第一次使用Wordpress系统的朋友,请先别着急发布文章及进行其他操作,为了更加科学的使用及管理wordpress,应该需要对其进行相关设置,主要涉及3个部分,一.常规设置,二.阅读设置,三.固 ...

  10. 冒泡排序(Bubble Sort)

    冒泡排序的基本思路 冒泡排序是一种效率极低的排序,首先它需要知道数组的有效数据长度,再对数据第一个和第二个两两比较,按照比较规则进行交换,然后第二个数据和第三个数据进行比较,按照比较规则进行交换:第一 ...