目录

1 问题描述

2 解决方案


1 问题描述

引用自百度百科:

如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量(strongly connected components)。

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。
当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量

2 解决方案

下面代码所使用图:

具体代码如下:

package com.liuzhen.practice;

import java.util.ArrayList;
import java.util.Scanner;
import java.util.Stack; public class Main {
public static int MAX = 100;
public static int count; //用于对图中顶点遍历的次序进行计数
public static int n;
public static int[] DFN = new int[MAX]; //记录图中每个节点的DFS遍历的时间戳(即次序)
public static int[] Low = new int[MAX]; //记录每个顶点的所在树的根节点编号
public static boolean[] inStack = new boolean[MAX]; //用于记录当前节点是否在栈中
public static Stack<Integer> stack; public void init(int n) {
count = 0;
stack = new Stack<Integer>();
for(int i = 0;i <= n;i++) {
DFN[i] = -1; //代表顶点i未被遍历
Low[i] = -1;
inStack[i] = false;
}
} static class edge {
public int a; //边的起点
public int b; //边的终点 edge(int a, int b) {
this.a = a;
this.b = b;
}
} public void dfs(ArrayList<edge>[] map, int start) {
DFN[start] = count++;
Low[start] = DFN[start];
stack.push(start);
inStack[start] = true;
int j = start;
for(int i = 0;i < map[start].size();i++) {
j = map[start].get(i).b;
if(DFN[j] == -1) { //顶点j未被遍历
dfs(map, j);
Low[start] = Math.min(Low[start], Low[j]);
} else if(inStack[j]) {
Low[start] = Math.min(Low[start], DFN[j]);
}
}
if(DFN[start] == Low[start]) {
System.out.print("强连通分量:");
do {
j = stack.pop();
System.out.print(j+" ");
inStack[j] = false;
} while(start != j);
System.out.println();
}
return;
} public static void main(String[] args) {
Main test = new Main();
Scanner in = new Scanner(System.in);
n = in.nextInt();
test.init(n);
int k = in.nextInt(); //有向图的边数目
@SuppressWarnings("unchecked")
ArrayList<edge>[] map = new ArrayList[n + 1];
for(int i = 0;i <= n;i++)
map[i] = new ArrayList<edge>();
in.nextLine();
for(int i = 0;i < k;i++) {
int a = in.nextInt();
int b = in.nextInt();
map[a].add(new edge(a, b));
}
test.dfs(map, 1);
}
}

运行结果:

6
8
1 2
1 3
2 4
3 4
3 5
4 1
4 6
5 6
强连通分量:6
强连通分量:5
强连通分量:3 4 2 1

参考资料:

1.有向图强连通分量的Tarjan算法

算法笔记_144:有向图强连通分量的Tarjan算法(Java)的更多相关文章

  1. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  2. 【转】有向图强连通分量的Tarjan算法

    原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...

  3. 【转载】有向图强连通分量的Tarjan算法

    转载地址:https://www.byvoid.com/blog/scc-tarjan [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly conn ...

  4. 有向图强连通分量的Tarjan算法(转)

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  5. 『图论』有向图强连通分量的Tarjan算法

    在图论中,一个有向图被成为是强连通的(strongly connected)当且仅当每一对不相同结点u和v间既存在从u到v的路径也存在从v到u的路径.有向图的极大强连通子图(这里指点数极大)被称为强连 ...

  6. 有向图强连通分量的Tarjan算法及模板

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向 ...

  7. Java实现有向图强连通分量的Tarjan算法

    1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大强连通子图,称为 ...

  8. 强连通分量的Tarjan算法

    资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...

  9. 有向图强连通分量的Tarjan算法和Kosaraju算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

随机推荐

  1. [BZOJ4873][六省联考2017]寿司餐厅(最大权闭合子图)

    4873: [Shoi2017]寿司餐厅 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 490  Solved: 350[Submit][Status ...

  2. PHP函数usort是咋回事?还能当后门?

    开始 详情看这:https://www.leavesongs.com/PHP/bypass-eval-length-restrict.html 原谅我见识短,没用过usort函数 上面连接的文章中,发 ...

  3. HTTP状态码,400,404,500,503

    HTTP状态码(HTTP Status Code) 一些常见的状态码为: 200 - 服务器成功返回网页 400 服务器不理解请求的语法 404 - 请求的网页不存在 503 - 服务不可用 所有状态 ...

  4. bzoj2938 病毒

    Description 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码 ...

  5. php-streams扩展学习

    一. streams是干嘛的: 用于统一文件.网络.数据压缩等类文件操作方式,并为这些类文件操作提供一组通用的函数接口. 二. stream是具有流式行为的资源对象,这个对象有一个包装类 例如: pr ...

  6. 通过wifi上网,桥接模式下virtualBox虚拟机无法连上网的解决办法

    https://jingyan.baidu.com/article/948f59242e601dd80ff5f929.html

  7. nginx+php-fpm 配置和错误总结

    <strong>空白页面:</strong>需要这个参数: fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_scrip ...

  8. 普通免费QQ客服在PC、手机端解决方案

    注意:以下测试 浏览器在Chrome,手机在iphone6 营销QQ.企业QQ(http://b.qq.com/)跟普通免费QQ(http://shang.qq.com/v3/widget.html) ...

  9. @ResponseBody,@RequestBody,@PathVariable

    最近需要做些接口服务,服务协议定为JSON,为了整合在Spring中,一开始确实费了很大的劲,经朋友提醒才发现,SpringMVC已经强悍到如此地步,佩服! 相关参考: Spring 注解学习手札(一 ...

  10. TSL / SSL

    参考: http://www.ruanyifeng.com/blog/2014/09/illustration-ssl.html http://www.tuicool.com/articles/IJ3 ...