题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3994

\( d(i*j)=\sum\limits_{x|i}\sum\limits_{y|j}e(gcd(\frac{i}{x},y)==1) \)

即把 i*j 的约数质因数分解后,把质因数尽量放在 x 那里,以防重复。

\( ans = \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\sum\limits_{x|i}\sum\limits_{y|j}e(gcd(\frac{i}{x},y)==1) \)

  \( = \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\sum\limits_{x|i}\sum\limits_{y|j}\sum\limits_{d|x , d|y}\mu(d) \)

注意这里不要把 d 提前,要把 x , y 提前。

  \( = \sum\limits_{x=1}^{n}\sum\limits_{y=1}^{m}\left\lfloor \frac{n}{x} \right\rfloor \left\lfloor \frac{m}{y} \right\rfloor \sum\limits_{d|x , d|y}\mu(d) \)

  \( = \sum\limits_{d=1}^{n}\mu(d)\sum\limits_{i=1}^{\frac{n}{d}}\sum\limits_{j=1}^{\frac{m}{d}}\left\lfloor \frac{n}{i*d} \right\rfloor \left\lfloor \frac{m}{j*d} \right\rfloor \)

这时要发现右边的求和边界与值的一些共同点。

  \( = \sum\limits_{d=1}^{n}\mu(d)\sum\limits_{i=1}^{\frac{n}{d}}\left\lfloor \frac{\left\lfloor\frac{n}{d}\right\rfloor}{i} \right\rfloor\sum\limits_{j=1}^{\frac{m}{d}} \left\lfloor \frac{\left\lfloor\frac{m}{d}\right\rfloor}{j} \right\rfloor \)

令 \( g(i) = \sum\limits_{j=1}^{i}\left\lfloor\frac{i}{j}\right\rfloor \) ,则 g 可以 \( n\sqrt{n} \) 预处理。剩下的就是数论分块了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=5e4+;
int u[N],s[N],pri[N];bool vis[N];ll g[N];
void init()
{
int lm=5e4,cnt=;
for(int t=;t<=lm;t++)
for(int i=,j;i<=t;i=j+)
{
int d=t/i; j=t/d;
g[t]+=(ll)d*(j-i+);
}
u[]=s[]=;
for(int i=;i<=lm;i++)
{
if(!vis[i])pri[++cnt]=i,u[i]=-;
for(int j=;j<=cnt&&(ll)i*pri[j]<=lm;j++)
{
vis[i*pri[j]]=;
if(i%pri[j]==){u[i*pri[j]]=;break;}
u[i*pri[j]]=-u[i];
}
s[i]=s[i-]+u[i];
}
}
int main()
{
int T,n,m;scanf("%d",&T); init();
while(T--)
{
scanf("%d%d",&n,&m);if(n>m)swap(n,m);
ll ans=;
for(int i=,j;i<=n;i=j+)
{
int d0=n/i,d1=m/i; j=min(n/d0,m/d1);
ans+=(ll)(s[j]-s[i-])*g[d0]*g[d1];
}
printf("%lld\n",ans);
}
return ;
}

bzoj 3994 [SDOI2015]约数个数和——反演的更多相关文章

  1. BZOJ 3994: [SDOI2015]约数个数和

    3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 898  Solved: 619[Submit][Statu ...

  2. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  3. 【刷题】BZOJ 3994 [SDOI2015]约数个数和

    Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T ...

  4. BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...

  5. BZOJ.3994.[SDOI2015]约数个数和(莫比乌斯反演)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] \(Solution\) 有结论:\[d(nm)=\sum_{i|d}\sum_{j|d ...

  6. ●BZOJ 3994 [SDOI2015]约数个数和

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3994 题解: 莫比乌斯反演 (先定义这样一个符号[x],如果x为true,则[x]=1,否则 ...

  7. 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)

    3994: [SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...

  8. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  9. 【BZOJ】3994: [SDOI2015]约数个数和

    题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...

随机推荐

  1. C#/JAVA 程序员转GO/GOLANG程序员笔记大全(DAY 03)

    go语言当中,没有 class 的概念,那么面向对象的编程思想如何展现呢,go语言中对结构体的使用 struct. package main import "fmt" type P ...

  2. IOS-OC 编码建议

    “神在细节之中” Objective-C 是 C 语言的扩展,增加了动态类型和面对对象的特性.它被设计成具有易读易用的,支持复杂的面向对象设计的编程语言.它是 Mac OS X 以及 iPhone 的 ...

  3. 转:Hive SQL的编译过程

    Hive是基于Hadoop的一个数据仓库系统,在各大公司都有广泛的应用.美团数据仓库也是基于Hive搭建,每天执行近万次的Hive ETL计算流程,负责每天数百GB的数据存储和分析.Hive的稳定性和 ...

  4. 014——数组(十四)array_reduce array_slice array_splice array_sum

    <?php /** */ //array_reduce()递归的用回调函数递归的对数组元素进行处理,返回处理后的值 /*$arr=array(1,2,3,4,5); function func( ...

  5. 快速切题 poj 1002 487-3279 按规则处理 模拟 难度:0

    487-3279 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 247781   Accepted: 44015 Descr ...

  6. Docker的大坑小洼(一)

    Docker的大坑小洼 Posted on March 2, 2015March 2, 2015 by 孙宏亮 Docker成为云计算领域的新宠儿已经是不争的事实,作为高速发展的开源项目,难免存在这样 ...

  7. bzip2压缩 解压缩

    压缩/解压缩压缩/解压缩之后的文件名称 必须是bz2 首先是  -z   压缩文件-d 解压缩!

  8. c# 获取随机数字/字符/时间

    using System; using System.Text; namespace HuaTong.General.Utility { /// <summary> /// 随机字符/数字 ...

  9. 关于str==null与str.trim().equal("")用作判断的疑问

    今天同学调试jsp页面的表单传值, 从a.jsp页面提交表单数据(就一项数据)到b.jsp页面, 在b.jsp页面设置一个判断,来检验接收到的数据是否为空, 若使用str==null做判断,无传值过来 ...

  10. 现代前端技术解析:Web前端技术基础

    ​ 最近几年,越来越多的人投入到前端大军中:时至至今,前端工程师的数量仍然不能满足企业的发展需求:与此同时,互联网应用场景的复杂化提高了对前端工程师能力的要求,一部分初期前端工程师并不能胜任企业的工作 ...