Written by Khang Nguyen Vo, khangvo88@gmail.com, for the RobustTechHouse blog. Khang is a graduate from the Masters of Quantitative and Computational Finance Program, John Von Neumann Institute 2014. He is passionate about research in machine learning, predictive modeling and backtesting of trading strategies.

INTRODUCTION

Bitcoin (or BTC) was invented by Japanese Satoshi Nakamoto and considered the first decentralized digital currency or crypto-currency. In this article, we experiment with a simple momentum based trading strategy for Bitcoin using PyAlgoTrade which is a Python Backtesting library. The Moving Average Crossover trading strategy we start with is defined as:

  • Enter position:

    • Long when MA10 > MA20
    • Short when MA10 < MA20
  • Exit position:
    • reverse trend
    • Take profit when we gain $20
    • Cut loss when we lose $10

MA10 refers to 10 day moving average price and MA20 refers 20 day moving average price.

DATA

The bitcoin data can be obtained from Bitcoin charts. The raw data of this source is at minute based sampling frequency and we group the data to 15-minutes prices as follows:

BITCOIN TRADING STRATEGY BACKTEST WITH PYALGOTRADE

PyAlgoTrade, as mentioned in previous blog, is an event-driven library. So we must override the basic events onEnterOk and onExitOk, which are raised when orders submitted before are successfully filled.

import Momentum.MyBaseStrategy as bstr  #extend from pyalgotrade.BacktestStrategy
from pyalgotrade.technical import ma
from pyalgotrade.barfeed import csvfeed
from pyalgotrade.bar import Frequency
from pyalgotrade import plotter
import numpy as np
import datetime

class MyStrategy(bstr.MyBTStrategy):
    def __init__(self, feed, cash,sma):
        self.__instrument = 'Bitcoin'
        bstr.MyBTStrategy.__init__(self,feed,cash, instrument=self.__instrument)
        self.MAXPROFIT = 20; self.STOPLOSS = 10
        self.getBroker().setAllowNegativeCash(True)                        

        # using for trading signal
        self.__position = None
        self.__price = feed[self.__instrument].getCloseDataSeries()
        self.__sma10 = ma.SMA(self.__price,sma[0],maxLen=100000)
        self.__sma20 = ma.SMA(self.__price,sma[1],maxLen=100000)
        self.__lastPrice = 0 #last price. Use for take profit and cutloss
        self.__signal = 0 #1: buying, -1: selling, 0: no change
        self.__last_exit_time = None

    def onEnterOk(self, position):
        execInfo = position.getEntryOrder().getExecutionInfo()
        self.info("%s %d at VND %s" %(self.alert_message,execInfo.getQuantity(),
                                      ut.accountingFormat(execInfo.getPrice())))
        self.__lastPrice = execInfo.getPrice()
        self.record_detail_transaction(position)

    def onEnterCanceled(self, position):
        self.__position = None        

    def onExitOk(self, position):
        execInfo = position.getExitOrder().getExecutionInfo()
        self.info("%s %d at %s\n================================="
                  %(self.alert_message,
                    execInfo.getQuantity(),'{:11,.2f}'.format(execInfo.getPrice())))
        self.__position = None
        self.record_detail_transaction(position, False) # log detail for later analysis

    # run before onEnterOk and onExitOk
    def onOrderUpdated(self,order):
        pass

The main process of trading algorithm is in onBars, which is raised every time there is new record of time series. PyAlgoTrade feed the data series and put it in bars, on each time given. This mandatory method is implemented as follows:

. . .
    # main event to update trading strategy
    def onBars(self, bars):
        self.portfolio_values.append(self.getBroker().getEquity())
        if self.__sma20[-1] is None:
            return
        bar = bars[self.__instrument]                

        if self.__sma10[-1] > self.__sma20[-1]:   self.__signal = 1 # buying signal
        elif self.__sma10[-1] < self.__sma20[-1]: self.__signal =-1 # selling signal
        shares = 1

        if(self.__position) is None and self.__sma20[-2] is not None:
            # go into long position
            if self.__sma10[-1] > self.__sma20[-1] and self.__sma10[-2] <= self.__sma20[-2]:
                self.info("short SMA > long SMA. RAISE BUY SIGNAL")
                #shares = int(self.getBroker().getCash() * 0.9 / bar.getClose())
                self.__position = self.enterLong(self.__instrument,shares,False)
                self.alert_message='Long position'
                self.buy_signals.append(self.getCurrentDateTime())
            #short position
            elif self.__sma10[-1] < self.__sma20[-1] and self.__sma10[-2] >= self.__sma20[-2]:
                self.info("short SMA < long SMA. RAISE SELL SIGNAL")
                self.__position = self.enterShort(self.__instrument,shares,False)
                self.alert_message='Short position'
                self.sell_signals.append(self.getCurrentDateTime())
        elif self.__lastPrice is not None and self.getBroker().getPositions() != {}:
            pos = self.getBroker().getPositions()[self.__instrument]
            # take profit when we obtain >= $20
            if( np.sign(pos)*(bar.getClose() - self.__lastPrice) >= self.MAXPROFIT):
                self.alert_message = 'TAKE PROFIT'
                self.__position.exitMarket()
                self.__lastPrice = None
            # cut loss when we lose more than $10
            elif (np.sign(pos)*(self.__lastPrice - bar.getClose())) >= self.STOPLOSS:
                self.alert_message = 'STOP LOSS'
                self.__position.exitMarket()
                self.__lastPrice = None
            elif pos*self.__signal < 0:
                self.alert_message = "Reverse signal. TAKE PROFIT"
                self.__position.exitMarket()
                self.__lastPrice = None
                if self.__signal < 0:
                    self.sell_signals.append(self.getCurrentDateTime())
                else:
                    self.buy_signals.append(self.getCurrentDateTime())
                self.__last_exit_time = self.getCurrentDateTime()

Then the main script as follows:

    filename = '../btcUSD15m_2.csv'
    # TODO: change the date range
    firstDate = datetime.datetime(2014,1,1,0,0,0,0,pytz.utc)
    endDate = datetime.datetime(2014,3,31,0,0,0,0,pytz.utc)

    feed = csvfeed.GenericBarFeed(15*Frequency.MINUTE,pytz.utc,maxLen=100000)
    feed.setBarFilter(csvfeed.DateRangeFilter(firstDate,endDate))
    feed.addBarsFromCSV('Bitcoin', filename)    

    cash = 10 ** 3 # 1,000 USD
    myStrategy = MyStrategy(feed,cash,[12,30]) #short and long moving average
    plt = plotter.StrategyPlotter(myStrategy, True, False, True)
    myStrategy.run()

    myStrategy.printTradingPerformance()

The trading transaction detail of this strategy from Jan 2014 to Mar 2014 are as follows:

In this short time window, the Sharpe Ratio is indeed poor and only -1.9. Moreover, there are a total of 200 trades executed in 3 months, and most are unprofitable trades (132/200 trades = 66%). Therefore, we need to reduce the number of unprofitable trades.

TWEAKING BITCOIN TRADING STRATEGY BACKTEST

The problem might be that we are using a very short-length moving average window to calculate the change of trends, so the strategy is very sensitive to changes. Now we try a longer moving average window with MA(80,200) crossover

    myStrategy = MyStrategy(feed,cash,[80,200]) #short and long moving average
    plt = plotter.StrategyPlotter(myStrategy, True, False, True)
    myStrategy.run()

The result of this trading strategy as follows for the same period.

The summary result when running this strategy between 2013-2015

CHARTS IN 2013

CHARTS IN 2014

CHARTS IN 2015

We see that the trading performance is better now. The Sharpe ratio is larger than 0.5, and in 2014, the cumulative returns is as big as 33%. The length of Moving Average could be further optimized (data-mined!).

NOTE ON TRANSACTION COSTS

In real trading, it is mandatory to add commission rates or transaction costs. Usually, the transaction cost can be computed as the difference between ASK price and BID price (BID-ASK SPREAD) if market orders are used to buy or sell. In our data set, the average “bid ask spread” is about 0.11, so we set the cost of each transaction to BTC 0.11.

from pyalgotrade.broker import backtesting
feed = createFeed(firstDate, endDate)
strat3 = MyStrategy(feed,cash,[80,200]) #short and long moving average
strat3.getBroker().setCommission(backtesting.FixedPerTrade(0.11)) #t-cost per trade = $0.11
strat3.run()
strat3.printTradingPerformance()

Overall, the strategy is still profitable, though we have to be mindful that because BitCoin history is very short, so the statistical significance of the strategy is inconclusive. Note that we assume there are no broker transaction fees. In reality, usually this fee cost 0.7$ per trade.

BitCoin Trading Strategies BackTest With PyAlgoTrade的更多相关文章

  1. Basics of Algorithmic Trading: Concepts and Examples

    https://www.investopedia.com/articles/active-trading/101014/basics-algorithmic-trading-concepts-and- ...

  2. Algorithmic Trading[z]

    Algorithmic Trading has been a hot topic for equity/derivative trading over a decade. Many ibanks an ...

  3. Python金融行业必备工具

    有些国外的平台.社区.博客如果连接无法打开,那说明可能需要"科学"上网 量化交易平台 国内在线量化平台: BigQuant - 你的人工智能量化平台 - 可以无门槛地使用机器学习. ...

  4. [转]Introduction to Learning to Trade with Reinforcement Learning

    Introduction to Learning to Trade with Reinforcement Learning http://www.wildml.com/2018/02/introduc ...

  5. Introduction to Learning to Trade with Reinforcement Learning

    http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ The academic ...

  6. OnePy--构建属于自己的量化回测框架

    本文主要记录我构建量化回测系统的学习历程. 被遗弃的项目:Chandlercjy/OnePy_Old 新更新中的项目:Chandlercjy/OnePy 目录 1. 那究竟应该学习哪种编程语言比较好呢 ...

  7. Should You Build Your Own Backtester?

    By Michael Halls-Moore on August 2nd, 2016 This post relates to a talk I gave in April at QuantCon 2 ...

  8. An Introduction to Stock Market Data Analysis with R (Part 1)

    Around September of 2016 I wrote two articles on using Python for accessing, visualizing, and evalua ...

  9. 数据集划分——train set, validate set and test set

    先扯点闲篇儿,直取干货者,可以点击这里. 我曾误打误撞的搞过一年多的量化交易,期间尝试过做价格和涨跌的预测,当时全凭一腔热血,拿到行情数据就迫不及待地开始测试各种算法. 最基本的算法是技术指标类型的, ...

随机推荐

  1. Logstash日志字段拆分grok

    参考和测试网站:http://grokdebug.herokuapp.com 例如:test-39.dev.abc-inc.com Mon Apr 24 13:53:58 CST 2017 2017- ...

  2. FMC—扩展外部 SDRAM

    本章参考资料:< STM32F4xx 参考手册 2>.< STM32F4xx 规格书>.库帮助文档< stm32f4xx_dsp_stdperiph_lib_um.chm ...

  3. Linux samba 服务的配置

    今天有个学生问我 samba 服务怎么配置,所以晚上特意研究一下怎么配置这个服务. 过程如下: sudo apt-get install samba samba-common // 安装 samba ...

  4. [usb]usb otg和host

    USB OTG 设备既能做主机,又能做设备.USB HOST是指主机.当OTG 插到 HOST 上,OTG 的角色 就是 device.当device 插到 OTG 上,OTG 的角色就是 HOST. ...

  5. 《C++ Primer》笔记-#include,#ifndef

    1.理解 #include 指示是怎样工作的 #include 设 施是 C++ 预处理器的一部分.预处理器处理程序的源代码,在编译器之前运行. C++ 继承了 C 的非常精细的预处理器.现在的 C+ ...

  6. CI 多表关联查询

    方法一:$this->db->query("sql  语句");     直接写sql语句 方法二: #多表关联查询 $data=$this->db->fr ...

  7. CSS旋转&翻转,兼容方案

    CSS代码,高级浏览器使用transform,ie用滤镜实现. 转自http://aijuans.iteye.com/blog/19364921 /*水平翻转*/ 2 .flipx { 3 -moz- ...

  8. 图像处理之二维码生成-qr

    Javascript生成二维码(QR)   网络上已经有非常多的二维码编码和解码工具和代码,很多都是服务器端的,也就是说需要一台服务器才能提供二维码的生成.本着对服务器性能的考虑,这种小事情都让服务器 ...

  9. 《Programming with Objective-C》第五章 Customizing Existing Classes

    1.分类里面只新增函数,不要新增变量:虽然新增是语法合法的,但是编译器并不会为你的property合成相应的成员变量.setter和getter Categories can be used to d ...

  10. hdu 3599(最短路+最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3599 思路:首先spfa求一下最短路,然后对于满足最短路上的边(dist[v]==dist[u]+w) ...