实际应用

LFM 模型在实际使用中有一个困难,就是很难实现实时推荐。经典的 LFM 模型每次训练都需要扫描所有的用户行为记录,并且需要在用户行为记录上反复迭代来优化参数,所以每次训练都很耗时,实际应用中只能每天训练一次。在新闻推荐中,冷启动问题非常明显,每天都会有大量的新闻,这些新闻往往如昙花一现,在很短的时间获得很多人的关注,然后在很短时间内失去关注,实时性就非常重要。雅虎对此提出了一个解决方案。

首先,利用新闻链接的内容属性(关键词、类别等)得到链接 i 的内容特征向量 yi,其次,实时收集用户对链接的行为,并且用这些数据得到链接 i 的隐特征向量 qi,然后,利用下面的公式预测用户 u 是否会单击链接 i:

LFM隐语义模型Latent Factor Model的更多相关文章

  1. 海量数据挖掘MMDS week4: 推荐系统之隐语义模型latent semantic analysis

    http://blog.csdn.net/pipisorry/article/details/49256457 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  2. RS:关于协同过滤,矩阵分解,LFM隐语义模型三者的区别

    项亮老师在其所著的<推荐系统实战>中写道: 第2章 利用用户行为数据 2.2.2 用户活跃度和物品流行度的关系 [仅仅基于用户行为数据设计的推荐算法一般称为协同过滤算法.学术界对协同过滤算 ...

  3. LFM 隐语义模型

    隐语义模型: 物品       表示为长度为k的向量q(每个分量都表示  物品具有某个特征的程度) 用户兴趣 表示为长度为k的向量p(每个分量都表示  用户对某个特征的喜好程度) 用户u对物品i的兴趣 ...

  4. 使用LFM(Latent factor model)隐语义模型进行Top-N推荐

    最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic ...

  5. 【转载】使用LFM(Latent factor model)隐语义模型进行Top-N推荐

    最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic ...

  6. 推荐系统之隐语义模型(LFM)

    LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型.那这种模型跟ItemCF或UserCF的不同在于: 对于UserCF,我们可以先计算和目标用户兴趣 ...

  7. 推荐系统之隐语义模型LFM

    LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型.那这种模型跟ItemCF或UserCF的不同在于: 对于UserCF,我们可以先计算和目标用户兴趣 ...

  8. 推荐系统--隐语义模型LFM

    主要介绍 隐语义模型 LFM(latent factor model). 隐语义模型最早在文本挖掘领域被提出,用于找到文本的隐含语义,相关名词有 LSI.pLSA.LDA 等.在推荐领域,隐语义模型也 ...

  9. 推荐系统第5周--- 基于内容的推荐,隐语义模型LFM

    基于内容的推荐

随机推荐

  1. 如何实现密码输入框focus状态弹出提示信息

    一.密码输入提示框样式实现 效果图如下: 源码如下: <html> <style type="text/css"> *{ padding: 0; margi ...

  2. Dll劫持漏洞详解

      一.dll的定义 DLL(Dynamic Link Library)文件为动态链接库文件,又称“应用程序拓展”,是软件文件类型.在Windows中,许多应用程序并不是一个完整的可执行文件,它们被分 ...

  3. HDU.1495 非常可乐 (BFS)

    题意分析 大家一定觉的运动以后喝可乐是一件很惬意的事情,但是seeyou却不这么认为.因为每次当seeyou买了可乐以后,阿牛就要求和seeyou一起分享这一瓶可乐,而且一定要喝的和seeyou一样多 ...

  4. Hive(四)hive函数与hive shell

    一.hive函数 1.hive内置函数 (1)内容较多,见< Hive 官方文档>            https://cwiki.apache.org/confluence/displ ...

  5. php curl使用ss代理

    1.安装 ss,过程略 2.ss 配置文件 { "server":"x.x.x.x", #你的 ss 服务器 ip "server_port" ...

  6. STL源码分析-iterator

    http://note.youdao.com/noteshare?id=4efcb6441063dae956c226f91c161897

  7. bzoj 1003 最短路+dp

    1003: [ZJOI2006]物流运输 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 8249  Solved: 3464[Submit][Stat ...

  8. 前端PHP入门-022-重点日期函数之获取本地化时间戳函数.md

      在实际的工作中我们还需要经常用到指定某个时间生成 例如:需要找到昨天到今天此时此刻的注册用户. 我们需要做两件事情: 得到当前的时间unix时间戳.用time()函数就可以直接搞定 那么昨天指定时 ...

  9. [DeeplearningAI笔记]卷积神经网络1.4-1.5Padding与卷积步长

    4.1卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4Padding 一张\(6*6\)大小的图片,使用\(3*3\)的卷积核设定步长为1,经过卷积操作后得到一个\(4*4 ...

  10. 持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型

    持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tens ...