【题意】2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000。

【算法】数论(莫比乌斯反演)

【题解】由上一题,

$ans=\sum_{g\leq min(n,m)}g\sum_{d\leq min(n/g,m/g)}\mu (d)*d^2*sum(n/gd,m/gd)$

令T=gd

$ans=\sum_{T\leq min(n,m)}sum(n/T,m/T)*T\sum_{d|T}\mu (d)*d$

后面部分由积性函数的乘积和约数和也是积性函数可以线性筛得出。

当i%prime[j]=0时,相对于i多出来的因子必然由重复因子即μ(d)=0,故无视即可。

复杂度O(n+T√n)。

#include<cstdio>
#include<algorithm>
using namespace std;
const int N=1e7,maxn=1e7+,MOD=1e8+;//
int s[maxn],sum[maxn],prime[maxn],tot,n,m;
bool mark[maxn];
int SUM(int x,int y){return 1ll*(1ll*x*(x+)/%MOD)*(1ll*y*(y+)/%MOD)%MOD;}
int main(){
s[]=;sum[]=;
for(int i=;i<=N;i++){
if(!mark[i]){s[prime[++tot]=i]=(-i+MOD)%MOD;}
for(int j=;j<=tot&&i*prime[j]<=N;j++){
mark[i*prime[j]]=;
if(i%prime[j]==){s[i*prime[j]]=s[i];break;}
s[i*prime[j]]=1ll*s[i]*s[prime[j]]%MOD;
}
sum[i]=(1ll*i*s[i]+sum[i-])%MOD;
}
int T;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int z=min(n,m),pos=,ans=;
for(int i=;i<=z;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans=(ans+1ll*(sum[pos]-sum[i-]+MOD)*SUM(n/i,m/i)%MOD)%MOD;
}
printf("%d\n",ans);
}
return ;
}

【BZOJ】2693: jzptab 莫比乌斯反演的更多相关文章

  1. BZOJ 2693: jzptab [莫比乌斯反演 线性筛]

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1194  Solved: 455[Submit][Status][Discu ...

  2. BZOJ 2693: jzptab( 莫比乌斯反演 )

    速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...

  3. BZOJ 2693 jzptab ——莫比乌斯反演

    同BZOJ 2154 但是需要优化 $ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \fr ...

  4. BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法

    Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...

  5. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  6. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  7. bzoj [SDOI2014]数表 莫比乌斯反演 BIT

    bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...

  8. bzoj 2693: jzptab 线性筛积性函数

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 444  Solved: 174[Submit][Status][Discus ...

  9. ●BZOJ 2693 jzptab

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题解: 莫比乌斯反演 先看看这个题,BZOJ 2154 Crash的数字表格,本题的升 ...

随机推荐

  1. Alpha事后诸葛(团队)

    [设想和目标] Q1:我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? "小葵日记"是为了解决18-30岁年轻用户在记录生活时希望得到一美体验友好 ...

  2. 【SSH框架】之Struts2系列(一)

    微信公众号:compassblog 欢迎关注.转发,互相学习,共同进步! 有任何问题,请后台留言联系 1.Struts2框架概述 (1).什么是Struts2 Struts2是一种基于MVC模式的轻量 ...

  3. js登录界面代码自用

    var btn = document.getElementById("a4"); var usne = document.getElementById("username ...

  4. IIS部署时failed to execute url 解决方法

    web.config中增加如下节点: <system.webServer>  <validation validateIntegratedModeConfiguration=&quo ...

  5. 学习websocket-SignalR,MVC中使用SignalR打造酷炫实用的即时通讯

    http://www.cnblogs.com/Leo_wl/p/4793284.html http://www.fangsi.net/archives/1144.html

  6. BZOJ 1266 上学路线(最短路+最小割)

    给出n个点的无向图,每条边有两个属性,边权和代价. 第一问求1-n的最短路.第二问求用最小的代价删边使得最短路的距离变大. 对于第二问.显然该删除的是出现在最短路径上的边.如果我们将图用最短路跑一遍预 ...

  7. BZOJ5017 Snoi2017炸弹(线段树+强连通分量+缩点+传递闭包)

    容易想到每个炸弹向其能引爆的炸弹连边,tarjan缩点后bitset传递闭包.进一步发现每个炸弹能直接引爆的炸弹是一段连续区间,于是线段树优化建图即可让边的数量降至O(nlogn).再冷静一下由于能间 ...

  8. atcoder 2017Code festival C ——D题 Yet Another Palindrome Partitioning(思维+dp)

    题目大意: 把一个字符串s分割成m个串,这m个串满足至多有一种字符出现次数为奇数次,其他均为偶数次,问m的最小值 题解: 首先我们想一下纯暴力怎么做 显然是可以n^2暴力的,然后dp[i]表示分割到i ...

  9. Cows and Cars UVA - 10491 (古典概率)

    按照题目的去推就好了 两种情况 1.第一次选择奶牛的门  概率是 a/(a+b) 打开c扇门后  除去选择的门 还剩 a-1-c+b扇门  则选到车的概率为b/(a-1-c+b) 2.第一次选择车的门 ...

  10. 转:pairwise 代码参考

    Learning to rank with scikit-learn: the pairwise transform http://fa.bianp.net/blog/2012/learning-to ...