【题意】2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000。

【算法】数论(莫比乌斯反演)

【题解】由上一题,

$ans=\sum_{g\leq min(n,m)}g\sum_{d\leq min(n/g,m/g)}\mu (d)*d^2*sum(n/gd,m/gd)$

令T=gd

$ans=\sum_{T\leq min(n,m)}sum(n/T,m/T)*T\sum_{d|T}\mu (d)*d$

后面部分由积性函数的乘积和约数和也是积性函数可以线性筛得出。

当i%prime[j]=0时,相对于i多出来的因子必然由重复因子即μ(d)=0,故无视即可。

复杂度O(n+T√n)。

#include<cstdio>
#include<algorithm>
using namespace std;
const int N=1e7,maxn=1e7+,MOD=1e8+;//
int s[maxn],sum[maxn],prime[maxn],tot,n,m;
bool mark[maxn];
int SUM(int x,int y){return 1ll*(1ll*x*(x+)/%MOD)*(1ll*y*(y+)/%MOD)%MOD;}
int main(){
s[]=;sum[]=;
for(int i=;i<=N;i++){
if(!mark[i]){s[prime[++tot]=i]=(-i+MOD)%MOD;}
for(int j=;j<=tot&&i*prime[j]<=N;j++){
mark[i*prime[j]]=;
if(i%prime[j]==){s[i*prime[j]]=s[i];break;}
s[i*prime[j]]=1ll*s[i]*s[prime[j]]%MOD;
}
sum[i]=(1ll*i*s[i]+sum[i-])%MOD;
}
int T;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int z=min(n,m),pos=,ans=;
for(int i=;i<=z;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans=(ans+1ll*(sum[pos]-sum[i-]+MOD)*SUM(n/i,m/i)%MOD)%MOD;
}
printf("%d\n",ans);
}
return ;
}

【BZOJ】2693: jzptab 莫比乌斯反演的更多相关文章

  1. BZOJ 2693: jzptab [莫比乌斯反演 线性筛]

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1194  Solved: 455[Submit][Status][Discu ...

  2. BZOJ 2693: jzptab( 莫比乌斯反演 )

    速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...

  3. BZOJ 2693 jzptab ——莫比乌斯反演

    同BZOJ 2154 但是需要优化 $ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \fr ...

  4. BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法

    Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...

  5. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  6. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  7. bzoj [SDOI2014]数表 莫比乌斯反演 BIT

    bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...

  8. bzoj 2693: jzptab 线性筛积性函数

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 444  Solved: 174[Submit][Status][Discus ...

  9. ●BZOJ 2693 jzptab

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题解: 莫比乌斯反演 先看看这个题,BZOJ 2154 Crash的数字表格,本题的升 ...

随机推荐

  1. Windows Forms编程实战学习:第一章 初识Windows Forms

    初识Windows Forms 1,用C#编程 using System.Windows.Forms;   [assembly: System.Reflection.AssemblyVersion(& ...

  2. 软工网络15团队作业4——Alpha阶段敏捷冲刺之Scrum 冲刺博客(Day1)

    概述 Scrum 冲刺博客对整个冲刺阶段起到领航作用,应该主要包含三个部分的内容: ① 各个成员在 Alpha 阶段认领的任务 ② 明日各个成员的任务安排 ③ 整个项目预期的任务量(使用整数表示,与项 ...

  3. 目标跟踪之Lukas-Kanade光流法(转)

    光流是图像亮度的运动信息描述.光流法计算最初是由Horn和Schunck于1981年提出的,创造性地将二维速度场与灰度相联系,引入光流约束方程,得到光流计算的基本算法.光流计算基于物体移动的光学特性提 ...

  4. week1 四则运算

    四则运算满足简单加减乘除,以及包含括号的复杂四则运算. 代码描述: 1.采用random随机数产生要参与计算的数字,以及运算符号 2.采用Scanner获取控制台输入的结果,与计算出来的结果进行比对, ...

  5. Linux架设DDNS服务器之自动更新脚本

    问题描述:客户端是动态IP,每次连网之后要nsupdate下才可以把客户端的hostname 与IP映射更新到DNS Server上 命令如下: nsupdate -k K*****.key > ...

  6. c# AOP 文章地址

    AOP:aspect oriented programing 面向切面编程.大概就是在程序的指定地方,可以做拦截然后插入执行指定的一段程序,这种模式在写日志,权限检查等操作很有用,这些操作都是固定的处 ...

  7. Spring Boot 学习资料【m了以后看】(转)

    推荐博客: 程序员DD SpringBoot集成 liaokailin的专栏 纯洁的微笑 SpringBoot揭秘与实战 catoop的专栏 方志朋Spring Boot 专栏 简书Spring Bo ...

  8. 【Python】Python发展历史

    起源 Python的作者,Guido von Rossum,荷兰人.1982年,Guido从阿姆斯特丹大学获得了数学和计算机硕士学位.然而,尽管他算得上是一位数学家,但他更加享受计算机带来的乐趣.用他 ...

  9. BZOJ3566 SHOI2014概率充电器(动态规划+概率期望)

    设f[i]为i在子树内不与充电点连通的概率.则f[i]=(1-pi)·∏(1-qk+qk·f[k]). 然后从父亲更新答案.则f[i]=f[i]·(1-qfa+qfa*f[fa]/(1-qfa+qfa ...

  10. 题解 P1059 【明明的随机数】

    不会其他排序的小金羊又来水题了 本题我的思路:堆排,速度不需要算很快,AC就可以... 注意:初学者不宜抄此代码(压行严重) code: #include <cstdio> #includ ...