【题意】给定仙人掌图(每条边至多在一个简单环上),求直径(最长的点对最短路径)。n<=50000,m<=10^7。

【算法】DFS树处理仙人掌

【题解】参考:仙人掌相关问题的处理方法(未完待续)

对仙人掌建立DFS树,参考无向图的点双连通分量Tarjan算法,在访问x时容易知道边(x,y)是否属于一个环。

设f[x]表示x点向下延伸的最长链长度,对于不在环上的边(x,y),有f[x]=max{f[y]+1}。统计直径可以在访问每个y时进行ans=max{ans,f[x]+f[y]+1}从而完成子树x对答案的贡献。

对于一个环,只在其DFS树中深度最小的点进行处理(其它点直接忽略环边的存在),假设当前这个点为x,其与深度最大的点y的连边为(x,y)。(这条边只要满足fa[y]≠x&&dfn[y]>dfn[x]就可以找到)

假设这个环有cnt个点,在环上只有距离<=cnt/2的点对可以贡献答案。我们只需要维护每个点和其前面半圈的点构成的点对中的最大值,这可以用单调队列维护。

但这样的话,前半圈的点与前面的点对会少考虑一部分,所以将环延伸半圈,即维护一圈半的点。最后记得枚举整个环更新f[x]。

复杂度O(m)。

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
int read(){
char c;int s=,t=;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
const int maxn=,maxm=;
struct edge{int v,from;}e[maxm];
int first[maxn],tot,fa[maxn],a[maxn],f[maxn],q[maxn],dfn[maxn],low[maxn],ans,dfsnum=,n,m;
void insert(int u,int v){tot++;e[tot].v=v;e[tot].from=first[u];first[u]=tot;}
void solve(int A,int B){
int cnt=;
for(int i=B;i!=A;i=fa[i])a[++cnt]=f[i];a[++cnt]=f[A];
for(int i=;i<=cnt/;i++)swap(a[i],a[cnt-i+]);
for(int i=cnt+;i<=cnt+(cnt>>);i++)a[i]=a[i-cnt];
int head=,tail=;q[head]=;
for(int i=;i<=cnt+(cnt>>);i++){
if(head<tail&&i-q[head]>cnt/)head++;
ans=max(ans,a[i]+a[q[head]]+i-q[head]);
while(head<tail&&a[i]-i>=a[q[tail-]]-q[tail-])tail--;
q[tail++]=i;
}
for(int i=;i<=cnt;i++)f[A]=max(f[A],a[i]+min(i-,cnt-i+));
}
void dfs(int x,int father){
dfn[x]=low[x]=++dfsnum;f[x]=;
for(int i=first[x];i;i=e[i].from)if(e[i].v!=father){
int y=e[i].v;
if(!dfn[y]){
fa[y]=x;
dfs(y,x);
low[x]=min(low[x],low[y]);
}else low[x]=min(low[x],dfn[y]);
if(low[y]>dfn[x]){
ans=max(ans,f[x]+f[y]+);
f[x]=max(f[x],f[y]+);
}
}
for(int i=first[x];i;i=e[i].from)
if(e[i].v!=father&&fa[e[i].v]!=x&&dfn[e[i].v]>dfn[x])solve(x,e[i].v);
}
int main(){
n=read();m=read();
for(int i=;i<=m;i++){
int k=read(),u=read();
for(int j=;j<=k;j++){
int v=read();
insert(u,v);insert(v,u);
u=v;
}
}
ans=;
dfs(,);
printf("%d",ans);
return ;
}

【BZOJ】1023: [SHOI2008]cactus仙人掌图 静态仙人掌(DFS树)的更多相关文章

  1. bzoj 1023: [SHOI2008]cactus仙人掌图 tarjan缩环&&环上单调队列

    1023: [SHOI2008]cactus仙人掌图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1141  Solved: 435[Submit][ ...

  2. 【刷题】BZOJ 1023 [SHOI2008]cactus仙人掌图

    Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的 ...

  3. bzoj 1023: [SHOI2008]cactus仙人掌图 2125: 最短路 4728: 挪威的森林 静态仙人掌上路径长度的维护系列

    %%% http://immortalco.blog.uoj.ac/blog/1955 一个通用的写法是建树,对每个环建一个新点,去掉环上的边,原先环上每个点到新点连边,边权为点到环根的最短/长路长度 ...

  4. BZOJ 1023: [SHOI2008]cactus仙人掌图 | 在仙人掌上跑DP

    题目: 求仙人掌直径 http://www.lydsy.com/JudgeOnline/problem.php?id=1023 题解: 首先给出仙人掌的定义:满足所有的边至多在一个环上的无向联通图 我 ...

  5. bzoj 1023 [SHOI2008]cactus仙人掌图 ( poj 3567 Cactus Reloaded )——仙人掌直径模板

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1023 http://poj.org/problem?id=3567 因为lyd在讲课,所以有 ...

  6. bzoj 1023: [SHOI2008]cactus仙人掌图

    这道题是我做的第一道仙人掌DP,小小纪念一下…… 仙人掌DP就是环上的点环状DP,树上的点树上DP.就是说,做一遍DFS,DFS的过程中处理出环,环上的点先不DP,先把这些换上的点的后继点都处理出来, ...

  7. BZOJ.1023.[SHOI2008]cactus仙人掌图(DP)

    题目链接 类似求树的直径,可以用(类似)树形DP求每个点其子树(在仙人掌上就是诱导子图)最长链.次长链,用每个点子节点不同子树的 max{最长链}+max{次长链} 更新答案.(不需要存次长链,求解过 ...

  8. bzoj 1023: [SHOI2008]cactus仙人掌图【tarjan+dp+单调队列】

    本来想先求出点双再一个一个处理结果写了很长发现太麻烦 设f[u]为u点向下的最长链 就是再tarjan的过程中,先照常处理,用最长儿子链和次长儿子链更新按ans,然后处理以这个点为根的环,也就是这个点 ...

  9. 【BZOJ1023】仙人掌图(仙人掌,动态规划)

    [BZOJ1023]仙人掌图(仙人掌,动态规划) 题面 BZOJ 求仙人掌的直径(两点之间最短路径最大值) 题解 一开始看错题了,以为是求仙人掌中的最长路径... 后来发现看错题了一下就改过来了.. ...

随机推荐

  1. 操作系统之实验二Step1-有序顺序表

    实验二Step1-有序顺序表 专业:商业软件工程     班级:商软2班     姓名:甘佳萍     学号:201406114207 实验要求:初始化 输入数组元素个数. 输入n个数,排序输出. 存 ...

  2. Scrum 项目准备3.0

    SCRUM 流程的步骤2: Spring 计划 1. 确保product backlog井然有序.(参考示例图1) 2. Sprint周期,一个冲刺周期,长度定为两周,本学期还有三个冲刺周期. Spr ...

  3. HDU 2132 An easy problem

    http://acm.hdu.edu.cn/showproblem.php?pid=2132 Problem Description We once did a lot of recursional ...

  4. react-自定义事件

    没有嵌套关系的组件(如兄弟组件)之间的通信,只能通过自定义事件的方式来进行. var EventEmitter = require('events').EventEmitter; import Rea ...

  5. 【前端学习笔记04】JavaScript数据通信Ajax方法封装

    //Ajax 方法封装 //设置数据格式 function setData(data){ if(!data){ return ''; } else{ var arr = []; for(k in da ...

  6. 【Quartz.Net】.net 下使用Quartz.Net

    Quartz.net是作业调度框架 1. 项目中添加quartz.net的引用(这里使用nuget管理) 新建一个类TimingJob,该类主要用于实现任务逻辑   using Quartz; usi ...

  7. HDU4258_Covered Walkway

    题目是一个很典型的斜率优化的题目.题意就不说了. 是这样的,对于双端优先队列,我们共有队首和队尾两个删除操作,来保证对于任意一个i,第一个元素都是最优的. 我们把dp的转移方程列出来就直达其状态为f[ ...

  8. 【JavaScript】jsp表格页面记录

    页面效果如下: jsp代码如下(里面引入了很多其他js文件,很多方法调用来自其他js): <%@ page language="java" contentType=" ...

  9. OSPF与Vlan间通信综合实验小结与端口隔离

      总结 本实验模拟实际工作环境的网络拓扑结构,至此终于理解了一部分的配置思路: 一.三层交换机连接路由器的端口配置 图中GE0/0/4应该是配置成access类型,这个时候应该是不带vlan标签的. ...

  10. Qt Widgets、QML、Qt Quick的区别

    Qt Widgets.QML.Qt Quick的区别 简述 看了之前关于 QML 的一些介绍,很多人难免会有一些疑惑: Q1:QML 和 Qt Quick 之间有什么区别? Q2:QtQuick 1. ...