机器学习-kNN-数据归一化
一、为什么需要数据归一化
不同数据之间因为单位不同,导致数值差距十分大,容易导致预测结果被某项数据主导,所以需要进行数据的归一化。
解决方案:将所有数据映射到同一尺度
二、最值归一化 normalization
最值归一化:把所有数据映射到0-1之间
适用于分布有明显边界的情况;受outlier影响较大
import numpy as np
import matplotlib.pyplot as plt
x = np.random.randint(0,100,100)
# 一维矩阵的最值归一化
print((x - np.min(x)) / (np.max(x) - np.min(x))) #最值归一化
# 二维矩阵中分别对每列进行最值归一化
x = np.random.randint(0,100,(50,2))
x = np.array(x,dtype=float)
x[:,0] = (x[:,0] - np.min(x[:,0])) / (np.max(x[:,0]) - np.min(x[:,0]))
x[:,1] = (x[:,1] - np.min(x[:,1])) / (np.max(x[:,1]) - np.min(x[:,1]))
# 绘制散点图
plt.scatter(x[:,0],x[:,1])
plt.show()
# 第0列的均值和方差
print(np.mean(x[:,0]))
print(np.std(x[:,0]))
# 第1列的均值和方差
print(np.mean(x[:,1]))
print(np.std(x[:,1]))
输出结果:
[0.37373737 0.77777778 0.47474747 0.17171717 0.82828283 0.13131313
0.66666667 1. 0.73737374 0.26262626 0.3030303 0.88888889
0.85858586 0.80808081 0.92929293 0.64646465 0.97979798 0.16161616
0.7979798 0.64646465 0.95959596 0.29292929 0.90909091 0.8989899
0.29292929 0.62626263 0.65656566 0.35353535 0.85858586 0.8989899
0.03030303 0.76767677 0.75757576 0.8989899 0.26262626 0.82828283
0.72727273 0.77777778 0.16161616 0.18181818 0.81818182 0.19191919
0.11111111 0.90909091 0.17171717 0.04040404 0.52525253 0.
0.34343434 0.88888889 0.07070707 0.82828283 0.01010101 0.63636364
0.56565657 0.1010101 0.05050505 0.15151515 0.91919192 0.03030303
0.96969697 0.26262626 0.06060606 0.06060606 0.66666667 0.74747475
0.14141414 0.64646465 0.77777778 0.90909091 0.47474747 0.72727273
0.96969697 0.76767677 0.23232323 0.26262626 0.54545455 0.41414141
0.11111111 0.38383838 0.66666667 0.12121212 0.64646465 0.27272727
0.21212121 0.21212121 0.84848485 0.71717172 0.5959596 0.56565657
0.07070707 0.77777778 0.95959596 0.90909091 0.42424242 0.
0.94949495 0.95959596 0.41414141 0.68686869]
0.4574736842105262
0.29314011096016795
0.5129896907216495
0.3081736973516696
三、均值方差归一化 standardization
均值方差归一化:把所有数据归一到均值为0方差为1的分布中
适用于数据分布没有明显的边界,有可能存在极端数据值
import numpy as np
import matplotlib.pyplot as plt
# 二维矩阵中分别对每列进行均值方差归一化
x2 = np.random.randint(0,100,(50,2))
x2 = np.array(x2,dtype=float)
x2[:,0] = (x2[:,0] - np.mean(x2[:,0])) / np.std(x2[:,0])
x2[:,1] = (x2[:,1] - np.mean(x2[:,1])) / np.std(x2[:,1])
plt.scatter(x2[:,0],x2[:,1])
plt.show()
#打印对应列的均值和方差
print(np.mean(x2[:,0]))
print(np.std(x2[:,0]))
print(np.mean(x2[:,1]))
print(np.std(x2[:,1]))
运行结果:
7.348288644237755e-17
1.0
8.104628079763643e-17
0.9999999999999999
四、对测试数据进行归一化
利用scikit-learn中的StandardScaler对数据进行均值方差归一化演示:
import numpy as np
from sklearn import datasets
iris = datasets.load_iris()
x = iris.data
y = iris.target
from sklearn.model_selection import train_test_split
#创建训练数据集和测试数据集
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state = 666)
from sklearn.preprocessing import StandardScaler
# 构造均值方差归一化对象
standardScaler = StandardScaler()
# 把自身返回回来,现在standardScaler中存放了计算均值方差归一化的关键信息
standardScaler.fit(x_train)
# 均值
print('训练数据均值:',standardScaler.mean_ )
# 描述数据分布范围 包括:方差 标准差等
print('训练数据方差:',standardScaler.scale_)
# 对训练数据进行归一化处理
x_train = standardScaler.transform(x_train)
# 对测试数据进行归一化处理,并赋值给 x_test_standard
x_test_standard = standardScaler.transform(x_test)
from sklearn.neighbors import KNeighborsClassifier
# 创建一个kNN分类器
knn_clf = KNeighborsClassifier(n_neighbors=3)
# 将均值方差归一化后的数据进行写入
knn_clf.fit(x_train,y_train)
# 计算分类器准确度
print("测试数据经过均值方差归一化后 准确度:",knn_clf.score(x_test_standard,y_test))
# 测试数据集没有进行归一化处理
print("测试数据未经过均值方差归一化后 准确度:",knn_clf.score(x_test,y_test))
运行结果:
训练数据均值: [5.83416667 3.0825 3.70916667 1.16916667]
训练数据方差: [0.81019502 0.44076874 1.76295187 0.75429833]
测试数据经过均值方差归一化后 准确度: 1.0
测试数据未经过均值方差归一化后 准确度: 0.3333333333333333
机器学习-kNN-数据归一化的更多相关文章
- 机器学习:数据归一化(Scaler)
数据归一化(Feature Scaling) 一.为什么要进行数据归一化 原则:样本的所有特征,在特征空间中,对样本的距离产生的影响是同级的: 问题:特征数字化后,由于取值大小不同,造成特征空间中样本 ...
- 第四十九篇 入门机器学习——数据归一化(Feature Scaling)
No.1. 数据归一化的目的 数据归一化的目的,就是将数据的所有特征都映射到同一尺度上,这样可以避免由于量纲的不同使数据的某些特征形成主导作用. No.2. 数据归一化的方法 数据归一化的方法主要 ...
- 数据归一化Scaler-机器学习算法
//2019.08.03下午#机器学习算法的数据归一化(feature scaling)1.数据归一化的必要性:对于机器学习算法的基础训练数据,由于数据类型的不同,其单位及其量纲也是不一样的,而也正是 ...
- 机器学习PAL数据预处理
机器学习PAL数据预处理 本文介绍如何对原始数据进行数据预处理,得到模型训练集和模型预测集. 前提条件 完成数据准备,详情请参见准备数据. 操作步骤 登录PAI控制台. 在左侧导航栏,选择模型开发和训 ...
- 数据处理:2.异常值处理 & 数据归一化 & 数据连续属性离散化
1.异常值分析 异常值是指样本中的个别值,其数值明显偏离其余的观测值.异常值也称离群点,异常值的分析也称为离群点的分析. 异常值分析 → 3σ原则 / 箱型图分析异常值处理方法 → 删除 / 修正填补 ...
- matlab将矩阵数据归一化到[0,255]
matlab将矩阵数据归一化到[0,255] function OutImg = Normalize(InImg) ymax=255;ymin=0; xmax = max(max(InImg) ...
- 数据归一化Feature Scaling
数据归一化Feature Scaling 当我们有如上样本时,若采用常规算欧拉距离的方法sqrt((5-1)2+(200-100)2), 样本间的距离被‘发现时间’所主导.尽管5是1的5倍,200只是 ...
- R学习:《机器学习与数据科学基于R的统计学习方法》中文PDF+代码
当前,机器学习和数据科学都是很重要和热门的相关学科,需要深入地研究学习才能精通. <机器学习与数据科学基于R的统计学习方法>试图指导读者掌握如何完成涉及机器学习的数据科学项目.为数据科学家 ...
- MATLAB实例:聚类初始化方法与数据归一化方法
MATLAB实例:聚类初始化方法与数据归一化方法 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 聚类初始化方法:init_methods.m f ...
随机推荐
- phaser2 微信小游戏入手
phaser2小游戏基本没什么什么问题,可以下常开发游戏.如果遇到什么问题, 可以提出来共同讨论. 下面来个例子 import './lib/weapp-adapter'; import Phaser ...
- Debugger DataSet 调试时查看DataSet
delphi 跟踪调试的时候查看DataSet数据记录 Ctrl+F7调试 增强工具DataSethttp://edn.embarcadero.com/article/40268 http://do ...
- 【C++】为多态基类声明virtual析构函数
来自<Effective C++>条款07:为多态声明virtual析构函数 当derived class对象经由一个base class指针被删除,而该base class带着一个non ...
- 【前端学习笔记】JavaScript 常用方法兼容性封装
获取样式函数封装 function getStyle(ele,attr){ if(ele.currentStyle){ return ele.currentStyle[attr]; } else{ r ...
- 在mvc4中上传、导入和导出excel表方法总结
通过excel的导入导出练习,使用NPOI组件还是方便一点,所有下面就以NPOI下的导入导出给出实例,通过网页导入excel表,首先上传,再导入数据到库,这里为了方便就不导入到库中了,直接拿到数据.导 ...
- 矩阵快速幂模板(pascal)
洛谷P3390 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格 ...
- ES2015中let的暂时性死区(TDZ)
Tomporal Dead Zone (TDZ)是ES2015中对作用域新的专用定义.是对于某些遇到在区块作用域绑定早于声明语句时的情况.Tomporal Dead Zone (TDZ)可以理解为时间 ...
- C++解析(19):函数对象、关于赋值和string的疑问
0.目录 1.函数对象 2.重载赋值操作符 3.string类 4.小结 1.函数对象 编写一个函数: 函数可以获取斐波那契数列每项的值 每调用一次返回一个值 函数可根据需要重复使用 实现功能: #i ...
- TortoiseSVN 和 VisualSVN Server 使用教程
TortoiseSVN 和 VisualSVN Server 使用教程 来源 https://blog.csdn.net/xgf415/article/details/75196360 目录: SVN ...
- java学习2-webserver测试工具soapUI使用
file-->new soap project-->输入project Name(随便)输入 WSDL地址,其他默认,点ok展开左侧加载的项目下的方法名,双击Request ,右侧出现测试 ...