跟我学算法-tensorflow 实现神经网络
神经网络主要是存在一个前向传播的过程,我们的目的也是使得代价函数值最小化
采用的数据是minist数据,训练集为50000*28*28 测试集为10000*28*28 lable 为50000*10, 10分类, 每一个结果对应一个label值
第一步: 导入数据
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('data/', one_hot=True)
# 第二步:初始化参数
n_hidden_1 = 256
n_hidden_2 = 128
n_input = 784
n_classes = 10 x = tf.placeholder('float', [None, n_input])
y = tf.placeholder('float', [None, n_classes]) stddev = 0.1
# 初始化变量w,stddev=stddev,使得标准差为0.1,
weights = {
'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1], stddev=stddev)),
'w2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], stddev=stddev)),
'out':tf.Variable(tf.random_normal([n_hidden_2, n_classes], stddev=stddev))
}
# 初始化变量b
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
第三步: 构造基本函数(向前传播函数)和cost,构造优化函数
# 构造基本函数
# 神经网络的前向传播
def multilayer_perceptron(_X, _weights, _biases):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(_X, _weights['w1']), _biases['b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, _weights['w2']), _biases['b2']))
return (tf.matmul(layer_2, _weights['out']) + _biases['out']) # 前向传播
pred = multilayer_perceptron(x, weights, biases)
#构造损失函数
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y))
# 构造优化模型,使得损失值最小
optm = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(cost)
# 计算预测精度
corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accr = tf.reduce_mean(tf.cast(corr, 'float'))
第四步:迭代优化参数
# 初始化
init = tf.global_variables_initializer() # 训练次数
train_epoches = 50
# 每次抽取样本数
batch_size = 100
# 每5次循环打印一次结果
display_step = 5
sess = tf.Session()
sess.run(init) for train_epoch in range(train_epoches):
avg_cost = 0
# 每次选取100个数据,循环的次数
num_batch = int(mnist.train.num_examples/batch_size)
for i in range(num_batch):
# 取出数据
bacth_x, bacth_y = mnist.train.next_batch(batch_size)
# 进行cost优化
sess.run(optm, feed_dict={x:bacth_x, y:bacth_y})
# 加上cost的值
feeds = {x:bacth_x, y:bacth_y}
avg_cost += sess.run(cost, feed_dict=feeds)/num_batch
# 每5次打印一次精度结果
if (train_epoch+1) % display_step == 0:
feeds_train = {x:bacth_x, y:bacth_y}
feed_test = {x:mnist.test.images, y:mnist.test.labels}
# 计算训练集的准确率, feed_dict的参数
train_acc = sess.run(accr, feed_dict=feeds_train)
# 计算测试集的准确率
test_acc = sess.run(accr, feed_dict=feed_test)
print("Epoch: %03d/%03d cost: %.9f train_acc: %.3f test_acc: %.3f"
% (train_epoch, train_epoches, avg_cost, train_acc, test_acc))
跟我学算法-tensorflow 实现神经网络的更多相关文章
- 跟我学算法- tensorflow 卷积神经网络训练验证码
使用captcha.image.Image 生成随机验证码,随机生成的验证码为0到9的数字,验证码有4位数字组成,这是一个自己生成验证码,自己不断训练的模型 使用三层卷积层,三层池化层,二层全连接层来 ...
- 跟我学算法-tensorflow 实现卷积神经网络
我们采用的卷积神经网络是两层卷积层,两层池化层和两层全连接层 我们使用的数据是mnist数据,数据训练集的数据是50000*28*28*1 因为是黑白照片,所以通道数是1 第一次卷积采用64个filt ...
- 跟我学算法-tensorflow 实现卷积神经网络附带保存和读取
这里的话就不多说明了,因为上上一个博客已经说明了 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt ...
- 跟我学算法- tensorflow 实现RNN操作
对一张图片实现rnn操作,主要是通过先得到一个整体,然后进行切分,得到的最后input结果输出*_w[‘out’] + _b['out'] = 最终输出结果 第一步: 数据载入 import ten ...
- 跟我学算法- tensorflow VGG模型进行测试
我们使用的VGG模型是别人已经训练好的一个19层的参数所做的一个模型 第一步:定义卷积分部操作函数 mport scipy.io import numpy as np import os import ...
- 跟我学算法- tensorflow模型的保存与读取 tf.train.Saver()
save = tf.train.Saver() 通过save. save() 实现数据的加载 通过save.restore() 实现数据的导出 第一步: 数据的载入 import tensorflo ...
- 跟我学算法-tensorflow 实现logistics 回归
tensorflow每个变量封装了一个程序,需要通过sess.run 进行调用 接下来我们使用一下使用mnist数据,这是一个手写图像的数据,训练集是55000*28*28, 测试集10000* 28 ...
- 跟我学算法-tensorflow 实现线性拟合
TensorFlow™ 是一个开放源代码软件库,用于进行高性能数值计算.借助其灵活的架构,用户可以轻松地将计算工作部署到多种平台(CPU.GPU.TPU)和设备(桌面设备.服务器集群.移动设备.边缘设 ...
- kaggle赛题Digit Recognizer:利用TensorFlow搭建神经网络(附上K邻近算法模型预测)
一.前言 kaggle上有传统的手写数字识别mnist的赛题,通过分类算法,将图片数据进行识别.mnist数据集里面,包含了42000张手写数字0到9的图片,每张图片为28*28=784的像素,所以整 ...
随机推荐
- Android Jni调用浅述
声明:欢迎转载,转载时请注明出处!http://blog.csdn.net/flydream0/article/details/7371692 1 简述 JNI是Java Native Interfa ...
- BZOJ1026 SCOI2009 windy数 【数位DP】
BZOJ1026 SCOI2009 windy数 Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B ...
- 给select增加placeholder技巧
转自:http://stackoverflow.com/questions/5805059/how-do-i-make-a-placeholder-for-a-select-box/8442831 使 ...
- 「GXOI / GZOI2019」简要题解
「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...
- smarty核心思想 自制模板引擎
<?php $tit = '今天下雨了,淋了半条街'; function tit($file){ //读文件 $h = file_get_contents($file); $h = str_re ...
- tomcat日志分类
综合:Tomcat下相关的日志文件 Cataline引擎的日志文件,文件名catalina.日期.log Tomcat下内部代码丢出的日志,文件名localhost.日期.log(jsp页面内部错误的 ...
- 深入理解java虚拟机-第二章:java内存区域与内存泄露异常
2.1概述: java将内存的管理(主要是回收工作),交由jvm管理,确实很省事,但是一点jvm因内存出现问题,排查起来将会很困难,为了能够成为独当一面的大牛呢,自然要了解vm是怎么去使用内存的. 2 ...
- Spring集成缓存
Want 上一篇简单服务端缓存API设计设计并实现了一套缓存API,适应不同的缓存产品,本文重点是基于Spring框架集成应用开发. 缓存集成 以普通Web应用开发常见的搭配Spring+Spring ...
- Synergy CORTEX M 启动流程
1.启动文件“startup_S7G2.c” 中断向量表地址指针:“0xe000ed08” /* Vector table. */ BSP_DONT_REMOVE const exc_ptr_t __ ...
- 实现 Win32 程序的消息映射宏(类似 MFC )
对于消息映射宏,不用多说了,用过 MFC 的人都很清楚.但目前有不少程序由于各种原因并没有使用 MFC,所以本帖讨论一下如何在 Win32 程序中实现类似MFC的消息映射宏.其实 Windows 的头 ...