CF 148D D. Bag of mice (概率DP||数学期望)
The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.
They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?
If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.
Input
The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).
Output
Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed 10 - 9.
Example
Input
1 3
Output
0.500000000
Input
5 5
Output
0.658730159
Note
Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.
题意:
一对情侣开房玩抓老鼠游戏,老鼠有黑白两色,女的为先手,先抓到白老鼠胜。特别的,男的每抓一只老鼠后,也会随机放走一只老鼠。问女的赢的概率是多少。如果输了,后果会很严重,当天晚上只能睡沙发。
思路:
dp[i][j]为当前状态,有i只白老鼠,j只黑老鼠,女的赢的概率。那么dp[][] = 这一次赢 + 以后赢= i/(i+j) + 。。。具体如下。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
double dp[][]; int w,b,i,j;
int main()
{
while(~scanf("%d%d",&w,&b)){
memset(dp,,sizeof(dp));
for(i=;i<=w;i++)
for(j=;j<=b;j++){
if(i==) { dp[i][j]=; continue;}
if(j==) { dp[i][j]=1.0; continue;}
dp[i][j]=1.0*i/(i+j);
if(j>=) dp[i][j]+=(1.0*j/(i+j))*(j-)/(i+j-)*i/(i+j-)*dp[i-][j-];
if(j>=) dp[i][j]+=(1.0*j/(i+j))*(j-)/(i+j-)*(j-)/(i+j-)*dp[i][j-]; }
printf("%.9lf\n",dp[w][b]);
}return ;
}
CF 148D D. Bag of mice (概率DP||数学期望)的更多相关文章
- Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题
除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...
- CF 148D Bag of mice 概率dp 难度:0
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- CF 148D D Bag of mice (概率dp)
题目链接 D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- codeforce 148D. Bag of mice[概率dp]
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- codeforces 148D Bag of mice(概率dp)
题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...
- Bag of mice(概率DP)
Bag of mice CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...
- Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp
题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...
- Codeforces 148D Bag of mice 概率dp(水
题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...
- 抓老鼠 codeForce 148D - Bag of mice 概率DP
设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...
随机推荐
- 【GAN】GAN的原理及推导
把GAN的论文看完了, 也确实蛮厉害的懒得写笔记了,转一些较好的笔记,前面先贴一些 原论文里推理部分,进行备忘. GAN的解释 算法流程 GAN的理论推理 转自:https://zhuanlan.zh ...
- Iterator 和 for...of 循环
Iterator(遍历器)的概念 § ⇧ JavaScript 原有的表示“集合”的数据结构,主要是数组(Array)和对象(Object),ES6 又添加了Map和Set.这样就有了四种数据集合,用 ...
- String类的subString(i)方法(基于jdk 1.9)
只有一个参数的: String str = new String("ABCD"); System.out.println("str="+str.substrin ...
- SpringBoot下的值注入
在我们实际开发项目中,经常会遇到一些常量的配置,比如url,暂时不会改变的字段参数,这个时候我们最好是不要直接写死在代码里的,因为这样编写的程序,应用扩展性太差了,我们可以直接写在配置文件中然后通过配 ...
- 【转载】deque双向队列
继vector和queue之后,又发现一个很好用的东西. 本篇转载自http://blog.csdn.net/morewindows/article/details/6946811 deque双向队列 ...
- 控制台小游戏-贪吃蛇,c++和c#版
说是c++版,其实只是用到了c++的cout和cin而已.这是我做的第二个控制台游戏,基本上每一行代码都加上了注释. 游戏嘛,我觉得重要的是了解他的思想,所以后期学了面向对象之后这个游戏的代码我也没有 ...
- Centos7 使用Dockerfile 制作自己的Dotnetcore程序镜像
准备Centos7环境及Docker环境 从Docker hub拉取 Microsoft/dotnet 基础镜像(可以使用国内加速) 向Centos7指定目录上传Dotnet Core程序,目录: / ...
- java程序设计基础篇 复习笔记 第五单元
1. method header: modifier, return value type, method signature(method name, parameter) method body ...
- 【QT】QML的Mouse事件(MouseArea)详解
https://blog.csdn.net/ieearth/article/details/42082837
- css 中相对定位和绝对定位
1. css中定位机制有三种: 标准文档流, 浮动, 绝对定位 2. 绝对定位就属于第三种定位, 用到position属性, 下面就是具体设置 相对定位: 相对于自身原有位置(就是普通流的时候)进行偏 ...