The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed 10 - 9.

Example

Input

1 3

Output

0.500000000

Input

5 5

Output

0.658730159

Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.

题意:

一对情侣开房玩抓老鼠游戏,老鼠有黑白两色,女的为先手,先抓到白老鼠胜。特别的,男的每抓一只老鼠后,也会随机放走一只老鼠。问女的赢的概率是多少。如果输了,后果会很严重,当天晚上只能睡沙发。

思路:

dp[i][j]为当前状态,有i只白老鼠,j只黑老鼠,女的赢的概率。那么dp[][] = 这一次赢 + 以后赢=   i/(i+j) +  。。。具体如下。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
double dp[][]; int w,b,i,j;
int main()
{
while(~scanf("%d%d",&w,&b)){
memset(dp,,sizeof(dp));
for(i=;i<=w;i++)
for(j=;j<=b;j++){
if(i==) { dp[i][j]=; continue;}
if(j==) { dp[i][j]=1.0; continue;}
dp[i][j]=1.0*i/(i+j);
if(j>=) dp[i][j]+=(1.0*j/(i+j))*(j-)/(i+j-)*i/(i+j-)*dp[i-][j-];
if(j>=) dp[i][j]+=(1.0*j/(i+j))*(j-)/(i+j-)*(j-)/(i+j-)*dp[i][j-]; }
printf("%.9lf\n",dp[w][b]);
}return ;
}

CF 148D D. Bag of mice (概率DP||数学期望)的更多相关文章

  1. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  2. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. CF 148D D Bag of mice (概率dp)

    题目链接 D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  5. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  6. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  7. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

  8. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  9. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

随机推荐

  1. 【Network Architecture】Feature Pyramid Networks for Object Detection(FPN)论文解析(转)

    目录 0. 前言 1. 博客一 2.. 博客二 0. 前言   这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里 ...

  2. python中的参数传递

    一般的参数顺序是先位置,再关键字,然后是包裹位置传递,包裹关键字传递.

  3. 把 b中的字段整合到a上

    a = [{"id": 1, "data": 1}, {"id": 2, "data": 1}, {"id&q ...

  4. 关于Eclipse SVN 分支 与主干 小结

    SVN建立分支和合并代码 https://blog.csdn.net/luofeixiongsix/article/details/52052631 SVN创建指定版本号的分支 https://blo ...

  5. $.extendGit 丢弃所有本地修改的方法

    git checkout . #本地所有修改的.没有的提交的,都返回到原来的状态 git stash #把所有没有提交的修改暂存到stash里面.可用git stash pop回复. git rese ...

  6. linq 多条件join

    var query=from a in db.A           join b in db.B.Where(c=>c.num>3)             on new {a.type ...

  7. SpringSecurity——基于Spring、SpringMVC和MyBatis自定义SpringSecurity权限认证规则

    本文转自:https://www.cnblogs.com/weilu2/p/springsecurity_custom_decision_metadata.html 本文在SpringMVC和MyBa ...

  8. Linux命令详解-hwclock/chock

    hwclock命令可以用来显示/设置硬件时钟命令. 在Linux中有硬件时钟与系统时钟等两种时钟.硬件时钟是指主机板上的时钟设备,也就是通常可在BIOS画面设定的时钟.系统时钟则是指kernel中 的 ...

  9. 二十一 Python分布式爬虫打造搜索引擎Scrapy精讲—爬虫数据保存

    注意:数据保存的操作都是在pipelines.py文件里操作的 将数据保存为json文件 spider是一个信号检测 # -*- coding: utf-8 -*- # Define your ite ...

  10. vue结合element-ui 的select 全选问题

    下拉列表多选 问题 通过操作 所有来进行全选 全不选问题 element-ui 中 select 记录下自己最近使用element-ui 中的 select多选问题 在element中默认是指单纯多选 ...