OpenCV学习(9) 分水岭算法(3)
本教程我学习一下opencv中分水岭算法的具体实现方式。
原始图像和Mark图像,它们的大小都是32*32,分水岭算法的结果是得到两个连通域的轮廓图。
原始图像:(原始图像必须是3通道图像)

Mark图像:

结果图像:

初始的mark图像数据如下,黄色的部分为我们的第一个mark区域,值为255,第二个区域为褐红色的区域,值为128,第三个绿色的区域,值为64。

opencv分水岭算法描述如下:
初始化mark矩阵,生成最初的注水区域。
1.设置mark图像的边框值为-1
2. 标记每个mark区域的边界为-2
3. 对于mark图像一个像素值,如果它本身值为0,但上下左右四邻域有一个像素值不为0,则把该点按照RGB高度值放入相应的队列。
举例说明:如下图像素点,它的mark值为0,但左和上像素值不为0,此时,我们求原始图像中对应像素的高度值,高度值的计算方式如下面公式,其中R表示Red通道值,G表示Green通道值,B表示Blue通道值,下标L表示左,R表示右,T表示上,B表示下,abs表示取绝对值,min和max分别为最小值和最大值函数:
min(max(abs(R-RL), abs(G-GL), abs(B-BL)),max(abs(R-RT), abs(G-GT), abs(B-BT)),max(abs(R-RR), abs(G-GR), abs(B-BR)),max(abs(R-RB), abs(G-GB), abs(B-BB)))

上图中指定的像素,它的高度值显然为0,所以我们把(2,2)点放入高度为0的队列中(总共有256个队列,对应0-255的高度)

初始化阶段完成后,我们得到下面的mark图,并把-2对应的边界像素点,按照其对应的RGB高度值放入相应的队列。

之后就进入了递归注水过程,递归过程描述如下:
for(; ; )
{
扫描0-255高度值队列,如果找到一个像素标记,则弹出该标记,并退出扫描。
如果该像素的四邻域中存在两个不同的非0值,表示该点为两个注水盆地的边缘,即分水岭线,在mark图像中标记该点为-1。
扫描该点的四邻域,是否存在为0的mark域,存在的话这把该邻域点按照rgb高度值,放入相应的队列。
}
经过上述的递归过程,最后我们得到的mark图像如下所示,其中绿色格子的-1即为所有的分水岭边界:

代码参见工程:FirstOpenCV10
我们也可以把输入图像换成灰度图,这样求高度值时,就比较简单,void WatershedGray(cv::Mat &src, cv::Mat &dst);该函数演示灰度图的分水岭算法。
OpenCV学习(9) 分水岭算法(3)的更多相关文章
- OpenCV学习(8) 分水岭算法(2)
现在我们看看OpenCV中如何使用分水岭算法. 首先我们打开一副图像: // 打开另一幅图像 cv::Mat image= cv::imread("../to ...
- OpenCV学习(7) 分水岭算法(1)
分水岭算法主要用于图像分段,通常是把一副彩色图像灰度化,然后再求梯度图,最后在梯度图的基础上进行分水岭算法,求得分段图像的边缘线. 下面左边的灰度图,可以描述为右边的地 ...
- OpenCV学习(16) 细化算法(4)
本章我们学习Rosenfeld细化算法,参考资料:http://yunpan.cn/QGRjHbkLBzCrn 在开始学习算法之前,我们先看下连通分量,以及4连通性,8连通性的概念: http://w ...
- OpenCV学习(15) 细化算法(3)
本章我们学习一下Hilditch算法的基本原理,从网上找资料的时候,竟然发现两个有很大差别的算法描述,而且都叫Hilditch算法.不知道那一个才是正宗的,两个算法实现的效果接近,第一种算 ...
- OpenCV学习(21) Grabcut算法详解
grab cut算法是graph cut算法的改进.在理解grab cut算之前,应该学习一下graph cut算法的概念及实现方式. 我搜集了一些graph cut资料:http://yunpan. ...
- OpenCV学习(18) 细化算法(6)
本章我们在学习一下基于索引表的细化算法. 假设要处理的图像为二值图,前景值为1,背景值为0. 索引表细化算法使用下面的8邻域表示法: 一个像素的8邻域,我们可以用8位二进制表示,比如下面的8邻域,表示 ...
- OpenCV 1 图像分割--分水岭算法代码
// watershed_test20140801.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" // // ch9_watershed ...
- OpenCV学习(19) 细化算法(7)
最后再来看一种通过形态学腐蚀和开操作得到骨架的方法.http://felix.abecassis.me/2011/09/opencv-morphological-skeleton/ 代码非常简单: v ...
- OpenCV学习(17) 细化算法(5)
本章我们看下Pavlidis细化算法,参考资料http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/con ...
随机推荐
- 尝试 TFS Express 2012.3
之前一直使用SVN做版本管理,但是只能管理代码.之前的一份工作,只用了TFS来管理,可以将任务与代码集成管理,很是方便,只是安装太过于繁琐,现在的公司人少,不想费那么多事. 最关键的,就是安装TFS需 ...
- Java学习笔记之:Java Servlet环境配置
一.介绍 Java Servlet 是运行在 Web 服务器或应用服务器上的程序,它是作为来自 Web 浏览器或其他 HTTP 客户端的请求和 HTTP 服务器上的数据库或应用程序之间的中间层. 使用 ...
- elementUI 学习入门之 layout 布局
layout 布局 通过基础的 24 分栏,可进行快速布局 基础布局 使用单一分栏创建基础的栅格布局, 通过 span 属性指定每栏的大小 <el-col :span="8" ...
- 洛谷P2286 [HNOI2004]宠物收养所 [STL,平衡树]
题目传送门 宠物收养所 题目描述 凡凡开了一间宠物收养场.收养场提供两种服务:收养被主人遗弃的宠物和让新的主人领养这些宠物. 每个领养者都希望领养到自己满意的宠物,凡凡根据领养者的要求通过他自己发明的 ...
- svm常用核函数介绍
这里有一篇博文介绍了,每个核函数的用途: https://blog.csdn.net/batuwuhanpei/article/details/52354822 在吴恩达的课上,也曾经给出过一系列的选 ...
- java 错误:无法找到或装入主类
1. 删除找不到的jar 2. 删除src以外的文件夹
- 【BZOJ 2054】 2054: 疯狂的馒头 (并查集特技)
Input 第一行四个正整数N,M,p,q Output 一共输出N行,第i行表示第i个馒头的最终颜色(如果最终颜色是白色就输出0). Sample Input 4 3 2 4 Sample Outp ...
- HDU 6141 I am your Father!(最小树形图)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6141 [题目大意] 给出一个有向图,求1点为根的最小树形图使得第n个点的直接父亲编号最小 [题解] ...
- PHP多个版本爆出远程DOS漏洞
近日,php多个版本爆出远程DoS漏洞(官方编号69364),利用该漏洞构造poc发起链接,很容易导致目标主机cpu的100%占用率,绿盟科技威胁响应中心随即启动应急机制, 启动应急响应工作,总结PH ...
- bzoj 4034: [HAOI2015]T2
4034: [HAOI2015]T2 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操 ...