http://www.lydsy.com/JudgeOnline/problem.php?id=1629

这题我想了很久都没想出来啊。。。

其实任意两头相邻的牛交换顺序对其它牛是没有影响的。。

那么我们考虑哪个在前。。(假设现在是待交换的是 a和b,a<b)

当重b-力a < 重a-力b时,就不需交换,否则交换。。

这个贪心自己想想就懂了的。。

  1. #include <cstdio>
  2. #include <cstring>
  3. #include <cmath>
  4. #include <string>
  5. #include <iostream>
  6. #include <algorithm>
  7. #include <queue>
  8. using namespace std;
  9. #define rep(i, n) for(int i=0; i<(n); ++i)
  10. #define for1(i,a,n) for(int i=(a);i<=(n);++i)
  11. #define for2(i,a,n) for(int i=(a);i<(n);++i)
  12. #define for3(i,a,n) for(int i=(a);i>=(n);--i)
  13. #define for4(i,a,n) for(int i=(a);i>(n);--i)
  14. #define CC(i,a) memset(i,a,sizeof(i))
  15. #define read(a) a=getint()
  16. #define print(a) printf("%d", a)
  17. #define dbg(x) cout << #x << " = " << x << endl
  18. #define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
  19. inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
  20. inline const int max(const int &a, const int &b) { return a>b?a:b; }
  21. inline const int min(const int &a, const int &b) { return a<b?a:b; }
  22.  
  23. const int N=50005;
  24. int n;
  25. struct nod { int x, y; } p[N];
  26. bool cmp(const nod &a, const nod &b) { return b.x-a.y<a.x-b.y; }
  27. int main() {
  28. read(n);
  29. for1(i, 1, n) read(p[i].x), read(p[i].y);
  30. sort(p+1, p+1+n, cmp);
  31. int sum=0, ans=(~0u>>1)+1;
  32. for3(i, n, 1) {
  33. ans=max(ans, sum-p[i].y);
  34. sum+=p[i].x;
  35. }
  36. print(ans);
  37. return 0;
  38. }

Description

Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join the circus. Their hoofed feet prevent them from tightrope walking and swinging from the trapeze (and their last attempt at firing a cow out of a cannon met with a dismal failure). Thus, they have decided to practice performing acrobatic stunts. The cows aren't terribly creative and have only come up with one acrobatic stunt: standing on top of each other to form a vertical stack of some height. The cows are trying to figure out the order in which they should arrange themselves within this stack. Each of the N cows has an associated weight (1 <= W_i <= 10,000) and strength (1 <= S_i <= 1,000,000,000). The risk of a cow collapsing is equal to the combined weight of all cows on top of her (not including her own weight, of course) minus her strength (so that a stronger cow has a lower risk). Your task is to determine an ordering of the cows that minimizes the greatest risk of collapse for any of the cows. //有三个头牛,下面三行二个数分别代表其体重及力量 //它们玩叠罗汉的游戏,每个牛的危险值等于它上面的牛的体重总和减去它的力量值,因为它要扛起上面所有的牛嘛. //求所有方案中危险值最大的最小

Input

* Line 1: A single line with the integer N. * Lines 2..N+1: Line i+1 describes cow i with two space-separated integers, W_i and S_i.

Output

* Line 1: A single integer, giving the largest risk of all the cows in any optimal ordering that minimizes the risk.

Sample Input

3
10 3
2 5
3 3

Sample Output

2

OUTPUT DETAILS:

Put the cow with weight 10 on the bottom. She will carry the other
two cows, so the risk of her collapsing is 2+3-3=2. The other cows
have lower risk of collapsing.

HINT

Source

【BZOJ】1629: [Usaco2007 Demo]Cow Acrobats(贪心+排序)的更多相关文章

  1. bzoj 1629: [Usaco2007 Demo]Cow Acrobats【贪心+排序】

    仿佛学到了贪心的新姿势-- 考虑相邻两头牛,交换它们对其他牛不产生影响,所以如果交换这两头牛能使这两头牛之间的最大值变小,则交换 #include<iostream> #include&l ...

  2. BZOJ 1629: [Usaco2007 Demo]Cow Acrobats

    Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...

  3. BZOJ1629: [Usaco2007 Demo]Cow Acrobats

    1629: [Usaco2007 Demo]Cow Acrobats Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 601  Solved: 305[Su ...

  4. BZOJ 1629 [Usaco2005 Nov]Cow Acrobats:贪心【局部证明】

    题目链接:http://begin.lydsy.com/JudgeOnline/problem.php?id=1332 题意: 有n头牛在“叠罗汉”. 第i头牛的体重为w[i],力量为s[i]. 一头 ...

  5. BZOJ 1697: [Usaco2007 Feb]Cow Sorting牛排序(置换+贪心)

    题面 Description 农夫JOHN准备把他的 N(1 <= N <= 10,000)头牛排队以便于行动.因为脾气大的牛有可能会捣乱,JOHN想把牛按脾气的大小排序.每一头牛的脾气都 ...

  6. [USACO2007 Demo] Cow Acrobats

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1629 [算法] 贪心 考虑两头相邻的牛 , 它们的高度值和力量值分别为ax , ay ...

  7. BZOJ 1697: [Usaco2007 Feb]Cow Sorting牛排序

    Description 农夫JOHN准备把他的 N(1 <= N <= 10,000)头牛排队以便于行动.因为脾气大的牛有可能会捣乱,JOHN想把牛按脾气的大小排序.每一头牛的脾气都是一个 ...

  8. bzoj 1119 [POI2009]SLO && bzoj 1697 [Usaco2007 Feb]Cow Sorting牛排序——思路(置换)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1119 https://www.lydsy.com/JudgeOnline/problem.p ...

  9. bzoj 1697: [Usaco2007 Feb]Cow Sorting牛排序【置换群】

    至今都不知道置换群是个什么东西--题解说什么就是什么.jpg 以下来自hzwer:http://hzwer.com/3905.html #include<iostream> #includ ...

随机推荐

  1. iterator [ɪtə'reɪtə] 遍历器

    lterator 遍历器 遍历器是一种接口,它为不同的数据结构提供了统一的访问机制. 如果一个数据结构具有遍历器接口,那么就可以依次处理该数据结构的成员. 当前 javascript 用来表示集合的数 ...

  2. 百度地图总结第二篇--POI检索功能

    简单介绍: 眼下百度地图SDK所集成的检索服务包含:POI检索.公交信息查询.线路规划.地理编码.行政区边界数据检索.在线建议查询.短串分享(包含POI搜索结果分享.驾车/公交/骑行/步行路线规划分享 ...

  3. Nginx如何保留真实IP和获取前端IP

    原理: squid,varnish以及nginx等,在做反向代理的时候,因为要代替客户端去访问服务器,所以,当请求包经过反向代理后,在代理服务器这里这个IP数据包的IP包头做了修改,最终后端web服务 ...

  4. ACE-Task结构介绍(二)——消息块ACE_Message_Block结构的分析

    消息块ACE_Message_Block结构的分析 包含一个指向带引用计数功能的ACE_Data_Block对象,该对象指向正在的数据缓冲区,这样可以在ACE_Message_Block对象之间灵活. ...

  5. 转:【Linux】linux系统中find和whereis查找命令常用示例

    转载至:wanqi博客园:http://www.cnblogs.com/wanqieddy/archive/2011/06/09/2076785.html whereis 命令,直接查找需要的文件名称 ...

  6. TFS创建登录用户并连接TFS

    简单使用 1.创建TFS组(Windows的组) 2.在“TFS管理控制台”中设置“组成员资格” 3.给“Team Foundation Administrators”组设置“属性” 4.给“Team ...

  7. [ASP.NET]使用uploadify上传图片,并在uploadify按钮上生成预览图

    目录 需求 主要代码 总结 需求 项目中有用到uploadify上传插件,给的原型就是上传成功后替换原来的图片.没办法需求在那儿,也不能修改需求吧,只能想办法解决问题了. 主要代码 修改uploadi ...

  8. c#(winform)中自定义ListItem类方便ComboBox添加Item项

    1.定义ListItem类 public class ListItem { private string _key = string.Empty; private string _value = st ...

  9. php调试函数

    void debug_print_backtrace ([ int $options = 0 [, int $limit = 0 ]] ) array debug_backtrace ([ int $ ...

  10. Redis(十三):Redis分布式锁的正确实现方式

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...