Constructing Roads In JGShining's Kingdom

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 13646    Accepted Submission(s): 3879

Problem Description
JGShining's kingdom consists of 2n(n is no more than 500,000) small cities which are located in two parallel lines.

Half of these cities are rich in resource (we call them rich cities) while the others are short of resource (we call them poor cities). Each poor city is short of exactly one kind of resource and also each rich city is rich in exactly one kind of resource. You may assume no two poor cities are short of one same kind of resource and no two rich cities are rich in one same kind of resource.

With the development of industry, poor cities wanna import resource from rich ones. The roads existed are so small that they're unable to ensure the heavy trucks, so new roads should be built. The poor cities strongly BS each other, so are the rich ones. Poor cities don't wanna build a road with other poor ones, and rich ones also can't abide sharing an end of road with other rich ones. Because of economic benefit, any rich city will be willing to export resource to any poor one.

Rich citis marked from 1 to n are located in Line I and poor ones marked from 1 to n are located in Line II.

The location of Rich City 1 is on the left of all other cities, Rich City 2 is on the left of all other cities excluding Rich City 1, Rich City 3 is on the right of Rich City 1 and Rich City 2 but on the left of all other cities ... And so as the poor ones.

But as you know, two crossed roads may cause a lot of traffic accident so JGShining has established a law to forbid constructing crossed roads.

For example, the roads in Figure I are forbidden.

In order to build as many roads as possible, the young and handsome king of the kingdom - JGShining needs your help, please help him. ^_^

 
Input
Each test case will begin with a line containing an integer n(1 ≤ n ≤ 500,000). Then n lines follow. Each line contains two integers p and r which represents that Poor City p needs to import resources from Rich City r. Process to the end of file.
 
Output
For each test case, output the result in the form of sample. 
You should tell JGShining what's the maximal number of road(s) can be built. 
 
Sample Input
2
1 2
2 1
3
1 2
2 3
3 1
 
Sample Output
Case 1:
My king, at most 1 road can be built.

Case 2:
My king, at most 2 roads can be built.

Hint

Huge input, scanf is recommended.

 
Author
JGShining(极光炫影)
 
Recommend
We have carefully selected several similar problems for you:  1024 1081 1074 1078 1080 

  
  动态规划(DP)中的最长上升子序列(LIS)问题,这道题要用二分法解。
  可以说是 DP+二分 问题。
  LIS有两种解法,这两种解法的时间复杂度分别为 n^2 , nlogn,分别用朴素查找和二分查找实现。很显然,第二种方法复杂度低,效率高。而这道题正是用到了第二种方法。如果不用二分法,第一种方法提交会超时。

  链接:LIS 算法解析

 
第一种方法,n^2,朴素查找:
1) 
for i=1 to total-1
  for j=i+1 to total
    if a[i]<a[j] then
      if dp[i]+1 > dp[j]
        dp[j] = dp[i]+1;

链接:Dynamic Programming之Longest Increasing Subsequence (LIS)问题

2) dp[i]=max{dp[j]}+1;(1<=j<i且a[j]<a[i])

for i=2 to total
  int m=0;
  for j=1 to i-1
    if dp[j] > m && a[j] < a[i] then
      m=dp[j];
  dp[i]=m+1;

链接:最长上升子序列LIS算法实现

 
第二种方法,nlogn,二分查找:
  看了很多博客描述二分查找,还是觉得百度百科上说的最好,几句就把我讲明白了。完全按照百科上的思路实现了一下,提交却WA,虽然我承认我的代码没有网上的写的精炼,但是我没发现逻辑有错误,在这里贴出代码,希望有朋友能帮忙看看问题出在哪里 
 #include <iostream>
#include <stdio.h>
using namespace std;
int a[];
int q[];
int BinSearch(int max,int min,int des) //二分查找第一个比des大的数,并返回坐标
{
int l = min,r = max;
int mid,t;
while(l<=r){
mid = (l+r)/;
if(des<=q[mid]){
t=mid;
r=mid-;
}
else{
l=mid+;
}
}
return t;
}
int main()
{
int n,num=;
while(cin>>n){
for(int i=;i<=n;i++){
int t,r;
scanf("%d%d",&t,&r);
a[t]=r;
}
q[] = ;
int f = ;
for(int i=;i<=n;i++){
if(a[i]>a[i-]){
q[f++]=a[i];
}
else{
int t = BinSearch(f-,,a[i]);
q[t] = a[i]; }
/*
for(int j=1;j<f;j++)
cout<<q[j]<<' ';
cout<<endl;
*/
}
cout<<"Case "<<num++<<':'<<endl;
if(f-==)
cout<<"My king, at most "<<f-<<" road can be built."<<endl;
else
cout<<"My king, at most "<<f-<<" roads can be built."<<endl;
cout<<endl;
}
return ;
}
 #include <iostream>
#include <stdio.h>
using namespace std;
int a[];
int q[];
int BinSearch(int n) //二分查找
{
int len = ;
q[] = a[];
for(int i=;i<=n;i++){
int l=,r=len;
while(l<=r){
int mid = (l+r)/;
if(a[i]<=q[mid])
r=mid-;
else
l=mid+;
}
q[l] = a[i];
if(l>len)
len=l;
}
return len;
}
int main()
{
int n,num=;
while(cin>>n){
for(int i=;i<=n;i++){
int t,r;
scanf("%d%d",&t,&r);
a[t]=r;
} int len = BinSearch(n); cout<<"Case "<<num++<<':'<<endl;
if(len==)
cout<<"My king, at most "<<len<<" road can be built."<<endl;
else
cout<<"My king, at most "<<len<<" roads can be built."<<endl;
cout<<endl;
}
return ;
}

Freecode : www.cnblogs.com/yym2013

hdu 1025:Constructing Roads In JGShining's Kingdom(DP + 二分优化)的更多相关文章

  1. HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP)

    HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP) 点我挑战题目 题目分析 题目大意就是给出两两配对的poor city和ric ...

  2. HDU 1025 Constructing Roads In JGShining's Kingdom(二维LIS)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  3. [ACM] hdu 1025 Constructing Roads In JGShining's Kingdom (最长递增子序列,lower_bound使用)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  4. HDU 1025 Constructing Roads In JGShining's Kingdom[动态规划/nlogn求最长非递减子序列]

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  5. HDU 1025 Constructing Roads In JGShining's Kingdom(DP+二分)

    点我看题目 题意 :两条平行线上分别有两种城市的生存,一条线上是贫穷城市,他们每一座城市都刚好只缺乏一种物资,而另一条线上是富有城市,他们每一座城市刚好只富有一种物资,所以要从富有城市出口到贫穷城市, ...

  6. hdu 1025 Constructing Roads In JGShining’s Kingdom 【dp+二分法】

    主题链接:pid=1025">http://acm.acmcoder.com/showproblem.php?pid=1025 题意:本求最长公共子序列.但数据太多. 转化为求最长不下 ...

  7. HDU 1025 Constructing Roads In JGShining's Kingdom(求最长上升子序列nlogn算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 解题报告:先把输入按照r从小到大的顺序排个序,然后就转化成了求p的最长上升子序列问题了,当然按p ...

  8. hdu 1025 Constructing Roads In JGShining's Kingdom

    本题明白题意以后,就可以看出是让求最长上升子序列,但是不知道最长上升子序列的算法,用了很多YY的方法去做,最后还是超时, 因为普通算法时间复杂度为O(n*2),去搜了题解,学习了一下,感觉不错,拿出来 ...

  9. 最长上升子序列 HDU 1025 Constructing Roads In JGShining's Kingdom

    最长上升子序列o(nlongn)写法 dp[]=a[]; ; ;i<=n;i++){ if(a[i]>dp[len]) dp[++len]=a[i]; ,dp++len,a[i])=a[i ...

随机推荐

  1. How to make a custom WIDGET in OpenERP

    转自:http://sahotaparamjitsingh.blogspot.com/2012/04/how-to-make-custom-widget-in-openerp.html   Hello ...

  2. CLightLock:一个简单AutoLock

    原理: 标准的RAII, 利用构造函数进行加锁,利用析构函数进行解锁. #ifndef _C_LIGTHT_LOCK_HPP #define _C_LIGTHT_LOCK_HPP class CLig ...

  3. chrome 如何官网下载谷歌浏览器离线安装包

      如何官网下载chrome谷歌浏览器离线安装包 CreateTime--2017年7月4日08:38:30Author:Marydon 参考链接:http://jingyan.baidu.com/a ...

  4. javascript 原生实现 jquery live/delegate

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xht ...

  5. LoadRunner 录制 mobile

    方法一:本地安装安卓模拟器,用LR选择模拟器录制方式录制 方法二:手机真机需要root,可以在电脑上下载一键root工具(如卓大师),然后手机和电脑用数据线连接,然后root. 在手机上运行 Mobi ...

  6. js加强小结

    一)回顾JavaScript基础 (1)函数的定义方式 *>>正常方式 function add(num1,num2){...} >>构造器方式 var add = new F ...

  7. 如何用原生js或jquery设置select的值

    1.原生js设置select值的方法 (1)有时可能需要隐藏select,但是还得需要更改select所传递的值.(select的默认选中之为第一个,即下标为0的选项值) var gd2=docume ...

  8. redis骚操作

    1.批量删除key redis-cli -h 127.0.0.1 -p 6379 -n 2 -a sdongpo123 keys '*form_id*' | xargs redis-cli -h 12 ...

  9. Atitit. 软件---多媒体区---- jmf 2.1.1 Java Media Framework 支持的格式

    Atitit. 软件---多媒体区---- jmf 2.1.1 Java Media Framework 支持的格式 JMF,全名为Java Media Framework,它可以在java appl ...

  10. 算法5-6:Kd树

    问题 给定一系列的点.和一个矩形.求矩形中包括的点的数量. 解答 这个问题能够通过建立矩阵来进行求解.首先将一个空间切割成矩阵,将点放置在相应的格子中.再计算矩形覆盖的格子.再推断格子中的点是否包括在 ...