hdu 1025:Constructing Roads In JGShining's Kingdom(DP + 二分优化)
Constructing Roads In JGShining's Kingdom
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 13646 Accepted Submission(s): 3879
Half of these cities are rich in resource (we call them rich cities) while the others are short of resource (we call them poor cities). Each poor city is short of exactly one kind of resource and also each rich city is rich in exactly one kind of resource. You may assume no two poor cities are short of one same kind of resource and no two rich cities are rich in one same kind of resource.
With the development of industry, poor cities wanna import resource from rich ones. The roads existed are so small that they're unable to ensure the heavy trucks, so new roads should be built. The poor cities strongly BS each other, so are the rich ones. Poor cities don't wanna build a road with other poor ones, and rich ones also can't abide sharing an end of road with other rich ones. Because of economic benefit, any rich city will be willing to export resource to any poor one.
Rich citis marked from 1 to n are located in Line I and poor ones marked from 1 to n are located in Line II.
The location of Rich City 1 is on the left of all other cities, Rich City 2 is on the left of all other cities excluding Rich City 1, Rich City 3 is on the right of Rich City 1 and Rich City 2 but on the left of all other cities ... And so as the poor ones.
But as you know, two crossed roads may cause a lot of traffic accident so JGShining has established a law to forbid constructing crossed roads.
For example, the roads in Figure I are forbidden.
In order to build as many roads as possible, the young and handsome king of the kingdom - JGShining needs your help, please help him. ^_^
You should tell JGShining what's the maximal number of road(s) can be built.
1 2
2 1
3
1 2
2 3
3 1
My king, at most 1 road can be built.
Case 2:
My king, at most 2 roads can be built.
Huge input, scanf is recommended.
链接:LIS 算法解析
- for i=1 to total-1
- for j=i+1 to total
- if a[i]<a[j] then
- if dp[i]+1 > dp[j]
- dp[j] = dp[i]+1;
链接:Dynamic Programming之Longest Increasing Subsequence (LIS)问题
2) dp[i]=max{dp[j]}+1;(1<=j<i且a[j]<a[i])
- for i=2 to total
- int m=0;
- for j=1 to i-1
- if dp[j] > m && a[j] < a[i] then
- m=dp[j];
- dp[i]=m+1;
- #include <iostream>
- #include <stdio.h>
- using namespace std;
- int a[];
- int q[];
- int BinSearch(int max,int min,int des) //二分查找第一个比des大的数,并返回坐标
- {
- int l = min,r = max;
- int mid,t;
- while(l<=r){
- mid = (l+r)/;
- if(des<=q[mid]){
- t=mid;
- r=mid-;
- }
- else{
- l=mid+;
- }
- }
- return t;
- }
- int main()
- {
- int n,num=;
- while(cin>>n){
- for(int i=;i<=n;i++){
- int t,r;
- scanf("%d%d",&t,&r);
- a[t]=r;
- }
- q[] = ;
- int f = ;
- for(int i=;i<=n;i++){
- if(a[i]>a[i-]){
- q[f++]=a[i];
- }
- else{
- int t = BinSearch(f-,,a[i]);
- q[t] = a[i];
- }
- /*
- for(int j=1;j<f;j++)
- cout<<q[j]<<' ';
- cout<<endl;
- */
- }
- cout<<"Case "<<num++<<':'<<endl;
- if(f-==)
- cout<<"My king, at most "<<f-<<" road can be built."<<endl;
- else
- cout<<"My king, at most "<<f-<<" roads can be built."<<endl;
- cout<<endl;
- }
- return ;
- }
- #include <iostream>
- #include <stdio.h>
- using namespace std;
- int a[];
- int q[];
- int BinSearch(int n) //二分查找
- {
- int len = ;
- q[] = a[];
- for(int i=;i<=n;i++){
- int l=,r=len;
- while(l<=r){
- int mid = (l+r)/;
- if(a[i]<=q[mid])
- r=mid-;
- else
- l=mid+;
- }
- q[l] = a[i];
- if(l>len)
- len=l;
- }
- return len;
- }
- int main()
- {
- int n,num=;
- while(cin>>n){
- for(int i=;i<=n;i++){
- int t,r;
- scanf("%d%d",&t,&r);
- a[t]=r;
- }
- int len = BinSearch(n);
- cout<<"Case "<<num++<<':'<<endl;
- if(len==)
- cout<<"My king, at most "<<len<<" road can be built."<<endl;
- else
- cout<<"My king, at most "<<len<<" roads can be built."<<endl;
- cout<<endl;
- }
- return ;
- }
Freecode : www.cnblogs.com/yym2013
hdu 1025:Constructing Roads In JGShining's Kingdom(DP + 二分优化)的更多相关文章
- HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP)
HDOJ(HDU).1025 Constructing Roads In JGShining's Kingdom (DP) 点我挑战题目 题目分析 题目大意就是给出两两配对的poor city和ric ...
- HDU 1025 Constructing Roads In JGShining's Kingdom(二维LIS)
Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
- [ACM] hdu 1025 Constructing Roads In JGShining's Kingdom (最长递增子序列,lower_bound使用)
Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
- HDU 1025 Constructing Roads In JGShining's Kingdom[动态规划/nlogn求最长非递减子序列]
Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
- HDU 1025 Constructing Roads In JGShining's Kingdom(DP+二分)
点我看题目 题意 :两条平行线上分别有两种城市的生存,一条线上是贫穷城市,他们每一座城市都刚好只缺乏一种物资,而另一条线上是富有城市,他们每一座城市刚好只富有一种物资,所以要从富有城市出口到贫穷城市, ...
- hdu 1025 Constructing Roads In JGShining’s Kingdom 【dp+二分法】
主题链接:pid=1025">http://acm.acmcoder.com/showproblem.php?pid=1025 题意:本求最长公共子序列.但数据太多. 转化为求最长不下 ...
- HDU 1025 Constructing Roads In JGShining's Kingdom(求最长上升子序列nlogn算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 解题报告:先把输入按照r从小到大的顺序排个序,然后就转化成了求p的最长上升子序列问题了,当然按p ...
- hdu 1025 Constructing Roads In JGShining's Kingdom
本题明白题意以后,就可以看出是让求最长上升子序列,但是不知道最长上升子序列的算法,用了很多YY的方法去做,最后还是超时, 因为普通算法时间复杂度为O(n*2),去搜了题解,学习了一下,感觉不错,拿出来 ...
- 最长上升子序列 HDU 1025 Constructing Roads In JGShining's Kingdom
最长上升子序列o(nlongn)写法 dp[]=a[]; ; ;i<=n;i++){ if(a[i]>dp[len]) dp[++len]=a[i]; ,dp++len,a[i])=a[i ...
随机推荐
- 40、JDBC相关概念介绍
1.1.数据库驱动 这里的驱动的概念和平时听到的那种驱动的概念是一样的,比如平时购买的声卡,网卡直接插到计算机上面是不能用的,必须要安装相应的驱动程序之后才能够使用声卡和网卡,同样道理,我们安装好数据 ...
- Mybatis 通过扫描 自动生成别名
<bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean" ...
- QQ在通信与传输的一些知识
http://www.nowamagic.net/librarys/veda/detail/2028 一.登录 不管UDP还是TCP,最终登陆成功之后,QQ都会有一个TCP连接来保持在线状态.这个TC ...
- appframework学习--nav的使用说明
app-framework学习--nav的使用说明: 语法: <nav id="mynav" style="background-image:url(../imag ...
- dbcp2连接池获取数据库连接Connection
一.先来看看手工创建的方式 public static Connection getConnection() { Connection conn = null; try { Class.forName ...
- Centos 7 防火墙
systemctl是CentOS7的服务管理工具中主要的工具,它融合之前service和chkconfig的功能于一体.启动一个服务:systemctl start firewalld.service ...
- mysql 开启慢查询 如何打开mysql的慢查询日志记录
mysql慢查询日志对于跟踪有问题的查询非常有用,可以分析出当前程序里有很耗费资源的sql语句,那如何打开mysql的慢查询日志记录呢,接下来将详细为您介绍 原文出自:http://www.jbxue ...
- Decoration4:分页展示
现在我们实现前台List的分页展示,这也是最基本的要求 先看现在的Rest数据格式,在spring的默认返回中,分页用到的元素都已经在page节点中返回了,只要在前台合理利用就足够了 { " ...
- shell脚本之函数的使用
把代码封装成函数,相当于造了一个“轮子”,之后就直接重复使用即可. 函数的创建 shell中函数的创建有2种方式 1.使用function关键字 语法 function test { ... } 2. ...
- 深入剖析 linux GCC 4.4 的 STL string
转自: 深入剖析 linux GCC 4.4 的 STL string 本文通过研究STL源码来剖析C++中标准模板块库std::string运行机理,重点研究了其中的引用计数和Copy-On-Wri ...