UOJ34 多项式乘法(NTT)
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
题目链接:UOJ34
正解:$NTT$
解题报告:
$NTT$是用来解决需要取模的一类多项式乘法问题。
如果要用$NTT$的话,对模数$p$是有要求的:模数要能写成$c*2^k+1$的形式,而且$2^k>n$;
同时,模数必须要有原根,原根$g$满足的性质是:$g^1,g^2…g^{p-1}$是在模$p$意义下的一个$1$到$p-1$的一个排列。
回忆一下$FFT$的步骤,中间需要用到单位复数根$w_n$来实现点值表示法,在这里可以直接用$g$的次幂来代替单位复数根,即令$g_n=w_n$,那么$g_n$$=$$g^{\frac{p-1}{n}}$。
其余的做法与$FFT$完全类似。
只是需要注意的是,$FFT$最后插值回去的时候,是取了个反,也就是加了个负号。
把单位复数根画出来,不难发现,是对称的,取了负号之后其实也就是颠倒了顺序,所以$NTT$的最后需要$reverse$一下。
注意$0$不用$reverse$,可以认为$0$就是对称轴所以无需考虑。
常用$NTT$模数:
$998244353$$=$$119*2^{23}+1$,原根为$3$;
$1004535809$$=$$479*2^{21}+1$,原根为$3$。
$4179340454199820288$$=$$29*2^{57}+1$,原根为$3$。
模板保存:
//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <bitset>
using namespace std;
typedef long long LL;
const int mod = 998244353;//119*2^23+1
const int MAXN = 300011;
const int G = 3;
int n,m,L,R[MAXN],a[MAXN],b[MAXN]; inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline LL fast_pow(LL x,LL y){
LL r=1;
while(y>0) {
if(y&1) r*=x,r%=mod;
x*=x; x%=mod;
y>>=1;
}
return r;
} inline void NTT(int *a,int n,int f){
for(int i=0;i<n;i++) if(i<R[i]) swap(a[i],a[R[i]]);
for(int i=1;i<n;i<<=1) {
LL gn=fast_pow(G,(mod-1)/(i<<1)),x,t;
for(int j=0;j<n;j+=(i<<1)) {
LL g=1;
for(int k=0;k<i;k++,g=1LL*g*gn%mod) {
x=a[j+k]; t=1LL*a[j+i+k]*g%mod;
a[j+k]=(x+t)%mod;
a[j+i+k]=(x-t+mod)%mod;
}
}
}
if(f==1) return ;
reverse(a+1,a+n); int ni=fast_pow(n,mod-2);
for(int i=0;i<=n;i++) a[i]=1LL*a[i]*ni%mod;
} inline void work(){
n=getint(); m=getint();
for(int i=0;i<=n;i++) a[i]=getint();
for(int i=0;i<=m;i++) b[i]=getint();
m+=n; for(n=1;n<=m;n<<=1) L++;
for(int i=0;i<n;i++) R[i]=(R[i>>1]>>1) | ((i&1) << (L-1));
NTT(a,n,1); NTT(b,n,1);
for(int i=0;i<=n;i++) a[i]=1LL*a[i]*b[i]%mod;
NTT(a,n,-1);
for(int i=0;i<=m;i++) printf("%d ",a[i]);
} int main()
{
#ifndef ONLINE_JUDGE
freopen("NTT.in","r",stdin);
freopen("NTT.out","w",stdout);
#endif
work();
return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
UOJ34 多项式乘法(NTT)的更多相关文章
- 洛谷P3803 【模板】多项式乘法 [NTT]
题目传送门 多项式乘法 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字, ...
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- UOJ34 多项式乘法
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- UOJ 34 多项式乘法 ——NTT
[题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...
- 【模板】多项式乘法 NTT
相对来说是封装好的,可以当模板来用. #include <bits/stdc++.h> #define maxn 5000000 #define G 3 #define ll long l ...
- UOJ34 多项式乘法(非递归版)
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- 【Uoj34】多项式乘法(NTT,FFT)
[Uoj34]多项式乘法(NTT,FFT) 题面 uoj 题解 首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西 直接贴一下代码吧.. #include<iostream> # ...
- 【uoj34】 多项式乘法
http://uoj.ac/problem/34 (题目链接) 题意 求两个多项式的乘积 Solution 挂个FFT板子. 细节 FFT因为要满足$n$是$2$的幂,所以注意数组大小. 代码 // ...
随机推荐
- 手游包压缩技术引领手游行业实现app页游化
近些年,掌上游戏时代已经成为全民风尚,但身为游戏开发商考虑过手游安装包大小与用户转化率之间的关系吗? 随着手机游戏市场发展愈发壮大,行业发展愈加成熟,手游厂商愈来愈多,手游产业也进入了优胜劣汰的环节, ...
- python常见模块之random模块
import random print(random.random()) #随机产生一个0-1之间的小数 print(random.randint(1,3)) #随机产生一个1-3之间的整数,包括1和 ...
- UVA Team Queue
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u013840081/article/details/26180081 题目例如以下: Team Qu ...
- Java基础—输入输出流
流的概念 在Java中,流是从源到目的地的字节的有序序列.Java中有两种基本的流——输入流(InputStream)和输出流(OutputStream). 根据流相对于程序的另一个端点的不同,分为节 ...
- SDUT3143:Combinatorial mathematics(组合数学)
题意:传送门 题目描述 As you know, shadow95 is pretty good at maths, especially combinatorial mathematics. Now ...
- 专项训练错题整理-nowcoder-算法
一.排序 1.快速排序在下列哪种情况下最易发挥其长处? 答案是: 被排序的数据完全无序. 在数据基本有序的情况下,会退化为冒泡排序,复杂度会退化为O(n^2). ①[因为,如果是基本有序的话, 那么每 ...
- django 登陆增加除了用户名之外的手机和邮箱登陆
在setting内增加 # Application definition AUTHENTICATION_BACKENDS = ( 'users.views.CustomBackend', ) 在vie ...
- ios极光推送快速集成教程
内容中包含 base64string 图片造成字符过多,拒绝显示
- hdu6121 Build a tree
地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6121 题面: Build a tree Time Limit: 2000/1000 MS (J ...
- matlab和mathematics最新的FTP地址
https://dio.obspm.fr/interne/logiciels/matlab/ 分享一个地址,非常好的FTP网站.