Cheapest Palindrome
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 10943   Accepted: 5232

Description

Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).

Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").

FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.

Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.

Input

Line 1: Two space-separated integers: N and M 
Line 2: This line contains exactly M characters which constitute the initial ID string 
Lines 3..N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.

Output

Line 1: A single line with a single integer that is the minimum cost to change the given name tag.

Sample Input

3 4
abcb
a 1000 1100
b 350 700
c 200 800

Sample Output

900

Hint

If we insert an "a" on the end to get "abcba", the cost would be 1000. If we delete the "a" on the beginning to get "bcb", the cost would be 1100. If we insert "bcb" at the begining of the string, the cost would be 350 + 200 + 350 = 900, which is the minimum.

Source

 
 
 
---------------------------------------------------------------------------------------------

吐槽:最近怕是要废了,马上期中考,考完noip。死在作业上了。

分析:

感觉没有什么讲得比他好了  -->>  传送门
 
 
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
int inv[],dp[][];
int main()
{
int n,m;
string s;
cin>>n>>m>>s;
for(int i=;i<n;i++)
{
char c;int a,b;
cin>>c>>a>>b;
inv[c]=min(a,b); //这题删减就是套路,既然删1个是回文的话,我们也可以增加1个变成回文,所以只需取最小值
}
for(int i=m-;i>=;i--)
{
for(int j=i+;j<m;j++)
{
dp[i][j]=min(dp[i+][j]+inv[s[i]],dp[i][j-]+inv[s[j]]);
if(s[i]==s[j])
dp[i][j]=min(dp[i][j],dp[i+][j-]);//已经是回文不需要增加费用了
}
}
cout<<dp[][m-];
return ;
}

【POJ】3280 Cheapest Palindrome(区间dp)的更多相关文章

  1. POJ 3280 Cheapest Palindrome (区间DP) 经典

    <题目链接> 题目大意: 一个由小写字母组成的字符串,给出字符的种类,以及字符串的长度,再给出添加每个字符和删除每个字符的代价,问你要使这个字符串变成回文串的最小代价. 解题分析: 一道区 ...

  2. POJ 3280 Cheapest Palindrome ( 区间DP && 经典模型 )

    题意 : 给出一个由 n 中字母组成的长度为 m 的串,给出 n 种字母添加和删除花费的代价,求让给出的串变成回文串的代价. 分析 :  原始模型 ==> 题意和本题差不多,有添和删但是并无代价 ...

  3. POJ 3280 - Cheapest Palindrome - [区间DP]

    题目链接:http://poj.org/problem?id=3280 Time Limit: 2000MS Memory Limit: 65536K Description Keeping trac ...

  4. POJ 3280 Cheapest Palindrome(DP 回文变形)

    题目链接:http://poj.org/problem?id=3280 题目大意:给定一个字符串,可以删除增加,每个操作都有代价,求出将字符串转换成回文串的最小代价 Sample Input 3 4 ...

  5. (中等) POJ 3280 Cheapest Palindrome,DP。

    Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system ...

  6. POJ 3280 Cheapest Palindrome【DP】

    题意:对一个字符串进行插入删除等操作使其变成一个回文串,但是对于每个字符的操作消耗是不同的.求最小消耗. 思路: 我们定义dp [ i ] [ j ] 为区间 i 到 j 变成回文的最小代价.那么对于 ...

  7. POJ 3280 Cheapest Palindrome(DP)

    题目链接 题意 :给你一个字符串,让你删除或添加某些字母让这个字符串变成回文串,删除或添加某个字母要付出相应的代价,问你变成回文所需要的最小的代价是多少. 思路 :DP[i][j]代表的是 i 到 j ...

  8. POJ 3280 Cheapest Palindrome 简单DP

    观察题目我们可以知道,实际上对于一个字母,你在串中删除或者添加本质上一样的,因为既然你添加是为了让其对称,说明有一个孤立的字母没有配对的,也就可以删掉,也能满足对称. 故两种操作看成一种,只需要保留花 ...

  9. POJ 3280 Cheapest Palindrome (DP)

     Description Keeping track of all the cows can be a tricky task so Farmer John has installed a sys ...

  10. POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)

    题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思 ...

随机推荐

  1. php-resque 简单的php消息队列

    摘要: 消息队列是个好东西,各种×××MQ很多.然而看一下它们的文档,你得吓尿,什么鬼,我只是想用它触发个短信接口而已. 幸好也有简单的.这次是php-resque 安装 首先这货需要在linux下跑 ...

  2. Django 知识点补充

    Django 知识点补充 1 Django如何在Model保存前做一定的固定操作,比如写一条日志 (1)利用Django的Model的Signal Dispatcher, 通过django.db.mo ...

  3. Gcov 详解 + 内核函数覆盖率测试方法详述及产生错误解决办法

    http://blog.csdn.net/wangyezi19930928/article/details/42638345 http://www.uml.org.cn/Test/201208311. ...

  4. css实现加载中的效果

    那天闲着,学习了一下样式效果,自己实现了一个简单的加载中的效果 废话不多说,开始吧!! 一.实现一个圆环       要实现圆环,首先我们需要知道盒模型里面border的本质,先来看一个效果吧 从上面 ...

  5. Linux运维-Rsync+Inotify

      Rsync+Inotify Rsync:linux系统下的数据镜像备份工具.使用快速增量备份工具Remote Sync可以远程同步,支持本地复制,或者与其他SSH.rsync主机同步. 特性: 可 ...

  6. android代码常识

    查看当前android代码版本号:build/core/version_defaults.mk---->查找platform_version android源码在线阅读网址 http://and ...

  7. Luogu 1452 Beauty Contest

    Luogu 1452 Beauty Contest 求平面最远点对,先求出凸包,再找凸包的直径. 使用旋转卡壳,直径一定出现在对踵点对间.比较不同点到同一直线距离可以用叉积算三角形面积来比较. 实现时 ...

  8. luvit 被忽视的lua 高性能框架(仿nodejs)

    备注:       luvit  开放模式和nodejs 一样,但是因为生态以及小众语言的问题,使用的人比较少,但是从目前     来看更新速度还是比较快的,但是从现有lua 开发框架来说一般倾向于使 ...

  9. 系列文章--一步一步学Silverlight2

    概述 由TerryLee编写的<Silverlight 2完美征程>一书,已经上市,在该系列文章的基础上补充了大量的内容,敬请关注.官方网站:http://www.dotneteye.cn ...

  10. InnoSetup 打包Winform程序

    在VS2012之前,我们做安装包一般都是使用VS自带的安装包制作工具来创建安装包的,VS2012.VS2013以后,微软把这个去掉,集成使用了InstallShield进行安装包的制作了,虽然思路差不 ...