题目来源: Ural 1302
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
 收藏
 关注
一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数。
例如:N = 8,数组A包括:2 5 6 3 18 7 11 19,可以选2 6,因为2 + 6 = 8,是8的倍数。
 
Input
第1行:1个数N,N为数组的长度,同时也是要求的倍数。(2 <= N <= 50000)
第2 - N + 1行:数组A的元素。(0 < A[i] <= 10^9)
Output
如果没有符合条件的组合,输出No Solution。
第1行:1个数S表示你所选择的数的数量。
第2 - S + 1行:每行1个数,对应你所选择的数。
Input示例
8
2
5
6
3
18
7
11
19
Output示例
2
2
6     这个确实没想到还有这种操作= =
   有N个数,让前缀和%N的值的范围就是[0,N-1],这个范围也是N个数,那么结果只有两个,一是这N个前缀和%N的值恰好对应着[0,N-1]这N个数,那显然,sum[i]==0就表示
输出前i个数就好了。如果有一个或多于一个没有在前缀和数组中出现,说明这个数组中必然存在至少两个相等的数,找到他们对应的位置,就是答案对应的区间。
   所以答案一定会存在,而且一定会出现几个数字连在一起的答案= =
 #include<iostream>
using namespace std;
int a[];
int sum[];
int vis[];
int main()
{
int n,m,i,j=,k=;
int l,r;
cin>>n;
for(i=;i<=n;++i){
scanf("%d",a+i);
}
for(i=;i<=n;++i){
sum[i]=(sum[i-]+a[i])%n;
if(sum[i]==) {
cout<<i<<endl;
for(j=;j<=i;++j) cout<<a[j]<<endl;
return ;
}
}
for(i=;i<=n;++i){
if(vis[sum[i]]){
cout<<i-vis[sum[i]]<<endl;
for(j=vis[sum[i]]+;j<=i;++j) cout<<a[j]<<endl;
return ;
}
vis[sum[i]]=i;
}
return ;
}

51nod-1103-抽屉原理的更多相关文章

  1. 51nod 1103 N的倍数(抽屉原理)

    1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍 ...

  2. 51nod 1103:N的倍数 抽屉原理

    1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 一个长度为N的数组A,从A中选出若干个数,使得这 ...

  3. 51nod1103(抽屉原理)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1103 题意:中文题诶- 思路:抽屉原理 对于两个数a, b, ...

  4. CodeForces485A——Factory(抽屉原理)

    Factory One industrial factory is reforming working plan. The director suggested to set a mythical d ...

  5. uva202:循环小数(循环节+抽屉原理)

    题意: 给出两个数n,m,0<=n,m<=3000,输出n/m的循环小数表示以及循环节长度. 思路: 设立一个r[]数组记录循环小数,u[]记录每次的count,用于标记,小数计算可用 r ...

  6. hdu 3303 Harmony Forever (线段树 + 抽屉原理)

    http://acm.hdu.edu.cn/showproblem.php?pid=3303 Harmony Forever Time Limit: 20000/10000 MS (Java/Othe ...

  7. 《Mathematical Olympiad——组合数学》——抽屉原理

    抽屉原理可以说是组合数学中最简单易懂的一个原理了,其最简单最原始的一个表达形式:对于n本书放到n-1个抽屉中,保证每个抽屉都要有书,则必存在一个抽屉中有2本书.但是这个简单的原理在很多问题中都能够巧妙 ...

  8. poj2356 Find a multiple(抽屉原理|鸽巢原理)

    /* 引用过来的 题意: 给出N个数,问其中是否存在M个数使其满足M个数的和是N的倍数,如果有多组解, 随意输出一组即可.若不存在,输出 0. 题解: 首先必须声明的一点是本题是一定是有解的.原理根据 ...

  9. POJ- Find a multiple -(抽屉原理)

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6452   Accepted: 2809   Special Judge D ...

  10. CF618F Double Knapsack 构造、抽屉原理

    传送门 首先,选取子集的限制太宽了,子集似乎只能枚举,不是很好做.考虑加强限制条件:将"选取子集"的限制变为"选取子序列"的限制.在接下来的讨论中我们将会知道: ...

随机推荐

  1. 史上最有魄力公司!20亿主要用于团队建设,要在上海做出一家BAT之外的互联网公司

    在去年的创业大军里,有一家公司显得很特别——微鲸科技,背靠华人文化,联合阿里巴巴.腾讯和央广,天使轮就高达20亿,是被誉为互联网电视领域的豪华创业团队. 在上市不到半年的时间里,旗下发布的55吋和43 ...

  2. 关于/proc/进程idpid/fd ,根据fd来查找连接

    当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽 ...

  3. 如何使用iClap进行产品管理?

    iClap概述: iClap是DevStore的全新产品,于2015年8月29号上线,该款产品专注于为移动互联网企业提供企业规范化解决方案,颠覆传统的产品管理模式,实现产品管理场景化.APP.甚至原型 ...

  4. 20145316《Java程序设计》第十周学习总结

    学习内容总结 网络编程 1.网络编程就是在两个或两个以上的设备(例如计算机)之间传输数据. 2.程序员所作的事情就是把数据发送到指定的位置,或者接收到指定的数据,这个就是狭义的网络编程范畴. 3.在发 ...

  5. CSS 媒体类型

    CSS 媒体类型 媒体类型允许你指定文件将如何在不同媒体呈现.该文件可以以不同的方式显示在屏幕上,在纸张上,或听觉浏览器等等. 一.媒体类型 一些CSS属性只设计了某些媒体.例如"voice ...

  6. 20145216史婧瑶《Java程序设计》第7周学习总结

    20145216 <Java程序设计>第7周学习总结 教材学习内容总结 第十三章 时间与日期 13.1 认识时间与日期 就目前来说,即使标注为GMT(无论是文件说明,或者是API的日期时间 ...

  7. 20145314郑凯杰 《Java程序设计》实验三 敏捷开发与XP实践实验报告

    20145314郑凯杰 <Java程序设计>实验二 实验报告 实验要求 完成实验.撰写实验报告,实验报告以博客方式发表在博客园,注意实验报告重点是运行结果,遇到的问题(工具查找,安装,使用 ...

  8. spring MVC Action里面怎么设置UTF-8编码集

    /* 编码转换,确保写数据库的时候不会出现乱码 */ public class CodingConvert{ public CodingConvert(){ // } public String to ...

  9. MR案例:单表关联查询

    "单表关联"这个实例要求从给出的数据中寻找所关心的数据,它是对原始数据所包含信息的挖掘. 需求:实例中给出 child-parent(孩子—父母)表,要求输出 grandchild ...

  10. POJ_1703 并查集应用

    通过这题基本完整理解了并查集的构建和使用.很轻巧的一种数据结构. 本题的方法值得注意:并没有直接构建两个帮派的集合,而是构建: 关系确认集合+若干单元素集(也即未确认帮派的初始状态)并辅助一个rel数 ...