luoguP3978 [TJOI2015]概率论 卡特兰数

考虑分别求出$f_n, g_n$表示$n$个点的有根二叉树的数量和$n$个点的所有情况下有根二叉树的叶子结点的总数
有$f_n = \sum_{k} f_k * f_{n - 1 - k}$,因此有$f_n = C_n$,其中$C_n$为卡特兰数
有$g_n = \sum_{k} g_k * f_{n - 1 - k} + g_{n - 1 - k} * f_k$
通过打表,可以发现$g_n = n * C_{n - 1}$,可以用归纳法证明
因此答案为$\frac{g_n}{f_n} = \frac{n * C_{n - 1}}{C_n} = \frac{n * (n + 1)}{4 * n - 2}$
复杂度$O(1)$
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; #define de long double de n; int main() {
cin >> n;
de p = (de)n * (de)(n + ) / (de)( * n - 2.0);
printf("%.13Lf", p);
return ;
}
luoguP3978 [TJOI2015]概率论 卡特兰数的更多相关文章
- BZOJ4001[TJOI2015]概率论——卡特兰数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...
- [TJOI2015]概率论[卡特兰数]
题意 \(n\) 个节点二叉树的叶子节点的期望个数. \(n\leq 10^9\) . 分析 实际询问可以转化为 \(n\) 个点的不同形态的二叉树的叶子节点总数. 定义 \(f_n\) 表示 \(n ...
- BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)
Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1. ...
- [TJOI2015] 概率论 - Catalan数
一棵随机生成的 \(n\) 个结点的有根二叉树(所有互相不同构的形态等概率出现)的叶子节点数的期望.\(n \leq 10^9\) Solution \(n\) 个点的二叉树个数即 Catalan 数 ...
- BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)
设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...
- 【BZOJ4001】[TJOI2015] 概率论(卡特兰数)
点此看题面 大致题意: 问你一棵\(n\)个节点的有根二叉树叶节点的期望个数. 大致思路 看到期望,比较显然可以想到设\(num_i\)为\(i\)个节点的二叉树个数,\(tot_i\)为所有\(i\ ...
- [luogu3978][bzoj4001][TJOI2005]概率论【基尔霍夫矩阵+卡特兰数】
题目描述 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢? 判断两棵树是否同构 ...
- 【BZOJ4001】[TJOI2015]概率论(生成函数)
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...
- [TJOI2015]概率论
[TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...
随机推荐
- [linux]linux下安装mysql
1.安装g++$sudo apt-get install build-essential注:此命令会同时安装gcc和make2.安装cmake$sudo apt-get install cmake3. ...
- 用体渲染的方法在Unity中渲染云(18/4/4更新)
github: https://github.com/yangrc1234/VolumeCloud 更新的内容在底部 最近在知乎上看到一篇文章讲云层的渲染(https://zhuanlan.zhihu ...
- 用js拼接url为pathinfo模式
用js拼接url为pathinfo模式
- BeanPostProcessor的五大接口
BeanPostProcessor 关于对象初始化前后的回调. public interface BeanPostProcessor { //该方法在bean实例化完毕(且已经注入完毕),在after ...
- C 中级 - SO_REUSEPORT 和 SO_REUSEADDR
引言 - 问题由来 刚开始学习网络编程时候, 常听到一个词, 先开启 "端口复用 SO_REUSEADDR". 那时很一知半解, 就知道该那么写了. 心里一直有些奇怪, 语义不通呀 ...
- 获取AD用户名
var wshNetwork = new ActiveXObject("WScript.Network"); alert("域名 = "+ wshNetwork ...
- htaccess附录:正则表达式、重定向代码
.htaccess正则表达式 # 位于行首时表示注释. [F] Forbidden(禁止): 命令服务器返回 403 Forbidden错误给用户浏览器 [L] Last rule(最后一条规则): ...
- UFT12.续期的操作方法
安装完毕UFT后,页面中报install错误,此时报此错误的原因是因为UFT的许可证过期了,解决方法如下: 方法是找到C:\ProgramData目录下的SafeNet Sentinel文件夹将其删除 ...
- 在 ASP.NET Core 具体使用文档
https://docs.microsoft.com/zh-cn/aspnet/core/fundamentals/hosting?tabs=aspnetcore2x
- java基础13 接口(及关键字:interface、implements)
接口 1.接口的定义格式 interface 接口名{ } interface :接口的关键字 implements:实现接口的关键字 2.接口的作用 1.程序的解耦.(低耦合) 2.定 ...