luoguP3978 [TJOI2015]概率论 卡特兰数
考虑分别求出$f_n, g_n$表示$n$个点的有根二叉树的数量和$n$个点的所有情况下有根二叉树的叶子结点的总数
有$f_n = \sum_{k} f_k * f_{n - 1 - k}$,因此有$f_n = C_n$,其中$C_n$为卡特兰数
有$g_n = \sum_{k} g_k * f_{n - 1 - k} + g_{n - 1 - k} * f_k$
通过打表,可以发现$g_n = n * C_{n - 1}$,可以用归纳法证明
因此答案为$\frac{g_n}{f_n} = \frac{n * C_{n - 1}}{C_n} = \frac{n * (n + 1)}{4 * n - 2}$
复杂度$O(1)$
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; #define de long double de n; int main() {
cin >> n;
de p = (de)n * (de)(n + ) / (de)( * n - 2.0);
printf("%.13Lf", p);
return ;
}
luoguP3978 [TJOI2015]概率论 卡特兰数的更多相关文章
- BZOJ4001[TJOI2015]概率论——卡特兰数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...
- [TJOI2015]概率论[卡特兰数]
题意 \(n\) 个节点二叉树的叶子节点的期望个数. \(n\leq 10^9\) . 分析 实际询问可以转化为 \(n\) 个点的不同形态的二叉树的叶子节点总数. 定义 \(f_n\) 表示 \(n ...
- BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)
Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1. ...
- [TJOI2015] 概率论 - Catalan数
一棵随机生成的 \(n\) 个结点的有根二叉树(所有互相不同构的形态等概率出现)的叶子节点数的期望.\(n \leq 10^9\) Solution \(n\) 个点的二叉树个数即 Catalan 数 ...
- BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)
设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...
- 【BZOJ4001】[TJOI2015] 概率论(卡特兰数)
点此看题面 大致题意: 问你一棵\(n\)个节点的有根二叉树叶节点的期望个数. 大致思路 看到期望,比较显然可以想到设\(num_i\)为\(i\)个节点的二叉树个数,\(tot_i\)为所有\(i\ ...
- [luogu3978][bzoj4001][TJOI2005]概率论【基尔霍夫矩阵+卡特兰数】
题目描述 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢? 判断两棵树是否同构 ...
- 【BZOJ4001】[TJOI2015]概率论(生成函数)
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...
- [TJOI2015]概率论
[TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...
随机推荐
- Eng1—English daily notes
English daily notes 2015年 4月 Phrases As a side note 作为附注,顺便说句题外话,和by the way意思相近,例句 As a side note, ...
- Vue 使用自定义组件时报错:Uncaught TypeError: Cannot assign to read only property 'exports' of object '#<Object>'
自己试做了一下vue的插件 参考element-ui: 写了一个组件 import message from './packages/message/index.js'; const install ...
- 【leetcode 简单】第四十二题 阶乘后的零
给定一个整数 n,返回 n! 结果尾数中零的数量. 示例 1: 输入: 3 输出: 0 解释: 3! = 6, 尾数中没有零. 示例 2: 输入: 5 输出: 1 解释: 5! = 120, 尾数中有 ...
- 49、是否使用过functools中的函数?其作用是什么?
functools模块介绍 functools用于高阶函数:指那些作用于函数或者返回其他函数的函数.通常情况下,只要是可以被当做函数调用的对象就是这个模块的目标. functools模块的功能 pyt ...
- Verilog笔记.3.有限状态机
有限状态机有限状态机是由寄存器组和组合逻辑构成的硬件时序电路,其状态(即由寄存器组的1和0的组合状态所构成的有限个状态)只可能在同一时钟跳变沿的情况下才能从一个状态转向另一个状态,究竟转向哪一状态还是 ...
- $.when()方法翻译2
mac不知道为何,文章字数一多,浏览器就重启.只好分开写了. In the event a Deferred was resolved with no value, the corresponding ...
- 莫比乌斯反演第二弹 入门 Coprime Integers Gym - 101982B
题目链接:https://cn.vjudge.net/problem/Gym-101982B 题目大意: 给你(a,b)和(c,d)这两个区间,然后问你这两个区间中互素的对数是多少. 具体思路:和我上 ...
- PHP 5 MySQLi 函数总结
连接数据库 mysqli_connect() 函数打开一个到 MySQL 服务器的新的连接. <?php $con=mysqli_connect("localhost",&q ...
- python并发编程之multiprocessing进程(二)
python的multiprocessing模块是用来创建多进程的,下面对multiprocessing总结一下使用记录. 系列文章 python并发编程之threading线程(一) python并 ...
- HDU 4300 Clairewd’s message(KMP+思维)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4300 题目大意:题目大意就是给以一段字符xxxxzzz前面x部分是密文z部分是明文,但是我们不知道是从 ...