【矩阵快速幂优化DP】【校内测试】
实际上是水水题叻,先把朴素DP方程写出来,发现$dp[i]$实际上是$dp[i-k]-dp[i-1]$的和,而看数据范围,我们实际上是要快速地求得这段的和,突然就意识到是矩阵快速幂叻。
构建矩阵什么的还是很简单滴,主要就是练一练手。
(还有就是水一水blog!换个字体,换个心情!
(快速乘是在模数很大时要用,避免超long long
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define mod 7777777 LL k, n, dp[]; struct Matrix {
LL w[][];
} base; struct Node {
LL w[][];
} pool; Matrix Cheng(Matrix a, Matrix b) {
Matrix ans;
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++)
ans.w[i][j] = ;
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++)
for(int p = ; p <= k; p ++)
ans.w[i][j] = (ans.w[i][j] + a.w[i][p] * b.w[p][j] % mod) % mod;
return ans;
} Matrix mpow(Matrix a, LL b) {
Matrix ans;
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++)
if(i == j) ans.w[i][j] = ;
else ans.w[i][j] = ;
for(; b; b >>= , a = Cheng(a, a))
if(b & ) ans = Cheng(ans, a);
return ans;
} int main() {
freopen("fyfy.in", "r", stdin);
freopen("fyfy.out", "w", stdout);
scanf("%lld%lld", &k, &n);
for(int i = ; i <= k; i ++)
for(int j = ; j <= k; j ++) base.w[i][j] = ;
for(int i = ; i <= k; i ++) base.w[][i] = ;
for(int i = ; i <= k; i ++) base.w[i][i-] = ;
dp[] = ;
for(int i = ; i <= k; i ++)
for(int j = ; j <= i; j ++)
dp[i] = (dp[i] + dp[i-j]) % mod;
for(int i = ; i <= k; i ++) pool.w[i][] = dp[k-i+];
base = mpow(base, n-k);
LL ans = ;
for(int i = ; i <= k; i ++) ans = (ans + base.w[][i] * pool.w[i][] % mod) % mod;
printf("%lld", ans);
return ;
}
【矩阵快速幂优化DP】【校内测试】的更多相关文章
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)
Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...
- 2018.10.22 bzoj1009: [HNOI2008]GT考试(kmp+矩阵快速幂优化dp)
传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的 ...
- 2018.10.16 uoj#340. 【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂优化dp)
传送门 一道不错的矩阵快速幂优化dpdpdp. 设f[i][j][k][l]f[i][j][k][l]f[i][j][k][l]表示前iii轮第iii轮还有jjj个一滴血的,kkk个两滴血的,lll个 ...
- 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...
- LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】
LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...
- bzoj1009 [HNOI2008]GT考试——KMP+矩阵快速幂优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我... 首 ...
- 2019.02.11 bzoj4818: [Sdoi2017]序列计数(矩阵快速幂优化dp)
传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9, ...
- 2018.10.19 NOIP模拟 硬币(矩阵快速幂优化dp)
传送门 不得不说神仙出题人DZYODZYODZYO出的题是真的妙. f[i][j][k]f[i][j][k]f[i][j][k]表示选的硬币最大面值为iii最小面值不小于jjj,总面值为kkk时的选法 ...
随机推荐
- 1-spring xml 和 注解 解析过程
spring mvc 入口 DispatcherServlet,类关系图如下所示 DispatcherServlet 就是一个 Servlet,那Servlet 的初始化方法 init()在哪里,通过 ...
- flask插件系列之SQLAlchemy基础使用
sqlalchemy是一个操作关系型数据库的ORM工具.下面研究一下单独使用和其在flask框架中的使用方法. 直接使用sqlalchemy操作数据库 安装sqlalchemy pip install ...
- MySQL登录问题1045 (28000)处理步骤【原创】
MySQL登录问题1045 (28000) 俩台服务器主从复制,从的同步账号无法远程登录主服务器.报错ERROR 1045 (28000): Access denied for user 'root ...
- 谷歌PageRank算法
1. 从Google网页排序到PageRank算法 (1)谷歌网页怎么排序? 先对搜索关键词进行分词,如“技术社区”分词为“技术”和“社区”: 根据建立的倒排索引返回同时包含分词后结果的网页: 将返回 ...
- CSS3 object-fit 图像裁剪
MDN定义 https://developer.mozilla.org/zh-CN/docs/Web/CSS/object-fit 该 object-fit CSS 属性指定替换元素的内容应该如何适应 ...
- 报错:Cobbler check 时报错
报错:[root@test88 ~]# cobbler checkTraceback (most recent call last): File "/usr/bin/cobbler&quo ...
- php 高并发解决方案(用于抢购) 转载
最近在做一个团购项目,遇到个问题,就是在抢购.秒杀.抽奖等活动时,库存数量有限,但是同时下单人数超过了库存数量,就会导致商品超售问题.那么我们怎么来解决这个问题呢,我的思路如下: sql1:查询商品库 ...
- POJ 3159 Candies(差分约束+spfa+链式前向星)
题目链接:http://poj.org/problem?id=3159 题目大意:给n个人派糖果,给出m组数据,每组数据包含A,B,C三个数,意思是A的糖果数比B少的个数不多于C,即B的糖果数 - A ...
- POJ 3278 Catch That Cow(简单BFS)
题目链接:http://poj.org/problem?id=3278 题目大意:给你两个数字n,k.可以对n执行操作(n+1,n-1,n*2),问最少需要几次操作使n变成k. 解题思路:bfs,每次 ...
- python爬取网易云音乐歌单音乐
在网易云音乐中第一页歌单的url:http://music.163.com/#/discover/playlist/ 依次第二页:http://music.163.com/#/discover/pla ...