bzoj 2821 分块
分块:
先预处理,将原序列分成长度为len的许多块,计算从第i块到第j块的答案,(可以做到O(n*n/len))。
每次询问时,将询问的区间分成三部分,:左边,中间,右边,中间是尽量大的一个块区间,其答案已经计算得到,左右两边加起来最多有2*len个元素,暴力计算其对答案的影响。O(q*len*f(n)),f(n)是暴力加入一个元素的代价。
这道题f(n)是log(n)
总的复杂度:f(n) = O( n*n/len + q*len*log(n) ),
当len = n*(q*log(n))-1/2时取最小值.
/**************************************************************
Problem: 2821
User: idy002
Language: C++
Result: Accepted
Time:24352 ms
Memory:13728 kb
****************************************************************/ #include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define maxn 100010
#define maxs 1510
#define isok(a) ((a)>0&&!((a)&1))
using namespace std; int n, c, m;
int a[maxn], f[maxs][maxs];
int lx[maxn], rx[maxn], mno[maxn], stot;
int cnt[maxn], cur_ans;
int vs[maxn], vt[maxn], vp[maxn];
bool met[maxn]; struct Pair {
int w, pos;
Pair(){}
Pair( int w, int pos ) : w(w), pos(pos) {}
};
Pair vod[maxn];
bool cmpwp( const Pair & a, const Pair & b ) {
return a.w<b.w || (a.w==b.w && a.pos<b.pos);
}
bool cmpp( const Pair & a, const Pair & b ) {
return a.pos<b.pos;
} void part() {
int len = (int)(double)sqrt((double)n/(log((double)n)/log()))+;
stot = n/len + (n%len!=);
for( int i=; i<=stot; i++ ) {
lx[i] = rx[i-]+;
rx[i] = rx[i-]+len;
if( i==stot ) rx[i] = n;
for( int j=lx[i]; j<=rx[i]; j++ )
mno[j] = i;
}
}
inline void update( int oldv, int newv ) {
bool od, nw;
od = isok(oldv);
nw = isok(newv);
if( od && !nw ) cur_ans--;
else if( !od && nw ) cur_ans++;
} void prep() {
for( int i=; i<=n; i++ )
vod[i] = Pair(a[i],i);
sort( vod+, vod++n, cmpwp );
for( int i=; i<=n; i++ ) {
if( vod[i].w!=vod[i-].w )
vs[vod[i].w] = vt[vod[i-].w] = i;
}
vt[vod[n].w] = n+;
for( int i=; i<=n; i++ ) vp[i] = vod[i].pos; for( int i=; i<=stot; i++ ) {
for( int j=i; j<=stot; j++ ) {
for( int k=lx[j]; k<=rx[j]; k++ ) {
update( cnt[a[k]], cnt[a[k]]+ );
cnt[a[k]]++;
}
f[i][j] = cur_ans;
}
cur_ans = ;
memset( cnt, , sizeof(cnt) );
}
} int qu_cnt( int w, int l, int r ) {
return upper_bound( vp+vs[w], vp+vt[w], r )
- lower_bound( vp+vs[w], vp+vt[w], l );
}
int query( int l, int r ) {
int ml=mno[l], mr=mno[r];
int rt;
if( ml==mr ) {
for( int j=l; j<=r; j++ ) {
update( cnt[a[j]], cnt[a[j]]+ );
cnt[a[j]]+=;
}
rt = cur_ans;
cur_ans = ;
for( int j=l; j<=r; j++ )
cnt[a[j]]--;
return rt;
}
if( mno[l]==mno[l-] ) ml++;
if( mno[r]==mno[r+] ) mr--;
cur_ans = f[ml][mr];
for( int j=l; j<lx[ml]; j++ ) {
if( met[a[j]] ) continue;
met[a[j]] = true;
int t1 = qu_cnt(a[j],l,r);
int t2 = qu_cnt(a[j],lx[ml],rx[mr]);
update( t2, t1 );
}
for( int j=r; j>rx[mr]; j-- ) {
if( met[a[j]] ) continue;
met[a[j]] = true;
int t1 = qu_cnt(a[j],l,r);
int t2 = qu_cnt(a[j],lx[ml],rx[mr]);
update( t2, t1 );
}
rt = cur_ans; cur_ans = ;
for( int j=l; j<lx[ml]; j++ ) met[a[j]]=false;
for( int j=r; j>rx[mr]; j-- ) met[a[j]]=false;
return rt;
} int main() {
scanf( "%d%d%d", &n, &c, &m );
for( int i=; i<=n; i++ ) scanf( "%d", a+i );
part();
prep();
for( int i=,x=,l,r; i<=m; i++ ) {
scanf( "%d%d", &l, &r );
l = (l+x)%n+;
r = (r+x)%n+;
if( l>r ) swap(l,r);
printf( "%d\n", x=query(l,r) );
}
}
bzoj 2821 分块的更多相关文章
- bzoj 2821 分块处理
大题思路就是分块,将n个数分成sqrt(n)个块,然后 处理出一个w数组,w[i,j]代表第i个块到第j个块的答案 那么对于每组询问l,r如果l,r在同一个块中,直接暴力做就行了 如果不在同一个块中, ...
- BZOJ 2821 分块+二分
题意: N个数,M组询问,每次问[l,r]中有多少个数出现正偶数次. 思路: 把N个数分成sqrt(n)块,预处理d[i][j]表示第i块起点到第j块末尾的答案 枚举起点i,并维护一个数组记录每个数到 ...
- [BZOJ 2821] 作诗(Poetize) 【分块】
题目链接:BZOJ - 2821 题目分析 因为强制在线了,所以无法用莫队..可以使用分块来做. 做法是,将 n 个数分成 n/x 个块,每个块大小为 x .先预处理出 f[i][j] ,表示从第 i ...
- [BZOJ 2821] 作诗
Link: BZOJ 2821 传送门 Solution: 一道类似区间众数的经典分块 由于个数为偶数这样的条件不能支持快速合并 因此要先$O(n*sqrt(n))$预处理出$pre[i][j]$表示 ...
- BZOJ 2821: 作诗(Poetize)( 分块 )
分块,分成N^0.5块.O(N^1.5)预处理出sm[i][j]表示前i块中j的出现次数, ans[i][j]表示第i~j块的答案. 然后就可以O(N^0.5)回答询问了.总复杂度O((N+Q)N^0 ...
- BZOJ 2821作诗(Poetize) 分块
Description 有一个长度为n的序列,序列每个元素的范围[1,c],有m个询问x y,表示区间[x,y]中出现正偶数次的数的种类数. Solution 大力分块解决问题. 把序列分块,f[i] ...
- bzoj 2821 作诗 分块
基本思路和蒲公英一样 还是预处理出每两个块间的答案 询问时暴力跑两边的贡献 #include<cstdio> #include<cstring> #include<ios ...
- 【BZOJ 2821】作诗
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2821 [算法] 如果不强制在线,显然莫队是可以解决此题的,那么,强制在线怎么办呢? ...
- bzoj 2741 分块+可持久化trie
多个询问l,r,求所有子区间异或和中最大是多少 强制在线 做法: 分块+可持久化trie 1.对于每块的左端点i,预处理出i到任意一个j,()i,j)间所有子区间异或和中最大为多少,复杂度O(\(n\ ...
随机推荐
- Web安全的三个攻防姿势
原文地址:https://segmentfault.com/a/1190000011601837 作者: zwwill_木羽 关于Web安全的问题,是一个老生常谈的问题,作为离用户最近的一层,我们大前 ...
- Linux下帮助命令
帮助命令(各种命令区别) 最常用的帮助命令 help --help help cd 查看内置命令的使用 info man help cd 查看内置命令的使用 获得帮助的途径: ma ...
- [转载]Windows服务编写原理及探讨(1)
有那么一类应用程序,是能够为各种用户(包括本地用户和远程用户)所用的,拥有用户授权级进行管理的能力,并且不论用户是否物理的与正在运行该应用程序的计算机相连都能正常执行,这就是所谓的服务了. (一)服务 ...
- SilverLight 浏览器出现滚动条
照网上说的很多解决方案要不得,最后想了下,直接在body上面加 style="overflow:hidden"解决问题,真觉得微软管理混乱,很多它自己的东西都不支持了.
- GPS位置模拟-安卓
测试定位功能时都需要位置模拟,一般有如下3种方式: a)手机上安装第三方模拟软件:需要Root: b)PC模拟其中运行app并模拟位置:不能在真机上运行,手机兼容性不能测试到: b)在app中让开发增 ...
- droupout
当训练样本比较少时,为了防止过拟合,可以丢掉一些节点的连接,让某些隐含层结点不工作(即停止更新权值),采用部分连接的方式. 参考:http://blog.csdn.net/on2way/article ...
- 如何修改WP文章字体格式、字号大小、字体颜色
在使用wordpress编辑文章的时候,很多朋友会像小编一样,发现它并没有像word文档一样有修改字体样式.字体大小.字体颜色.分页符等功能按钮,对我们写文章极为不便,原因是wordpress默认使用 ...
- 【转】EventBus 3.0使用详解
原文:https://www.jianshu.com/p/f9ae5691e1bb 01 前言 当我们进行项目开发的时候,往往是需要应用程序的各组件.组件与后台线程间进行通信,比如在子线程中进行请求数 ...
- Yii 简明学习教程
Yii是一个基于组件的高性能PHP框架,用于快速开发Web应用程序(下面内容基于Yii 1.1) 1. 典型的工作流 用户向入口脚本index.php发起请求 入口脚本加载应用配置config.php ...
- Robot Framework Selenium(RFS :web自动化测试神器)
Robot Framework 目录 1简介 2特性 3RIDE 1.简介: Robot Framework是一款python编写的功能自动化测试框架.具备良好的可扩展性,支持关键字驱动,可以同时测试 ...