以上几个概念之前没有完全弄清其含义及区别,容易混淆概念,在本文浅析一下:

一、online learning vs batch learning

online learning强调的是学习是实时的,流式的,每次训练不用使用全部样本,而是以之前训练好的模型为基础,每来一个样本就更新一次模型,这种方法叫做OGD(online gradient descent)。这样做的目的是快速地进行模型的更新,提升模型时效性。

online learning其实细分又可以分为batch模式和delta模式。batch模式的时效性比delta模式要低一些。分析一下batch模式,比如昨天及昨天的数据训练成了模型M,那么今天的每一条训练数据在训练过程中都会更新一次模型M,从而生成今天的模型M1。

而batch learning或者叫offline learning强调的是每次训练都需要使用全量的样本,因而可能会面临数据量过大的问题。后面要讨论的批量梯度下降法(BGD)和随机梯度下降法(SGD)都属于batch learning或者offline learning的范畴。

batch learning一般进行多轮迭代来向最优解靠近。online learning没有多轮的概念,如果数据量不够或训练数据不够充分,通过copy多份同样的训练数据来模拟batch learning的多轮训练也是有效的方法。

二、批量梯度下降(BGD)vs 随机梯度下降(SGD)

首先明确BGD和SGD都属于batch learing,都需要全量训练数据进行训练,需要遍历所有样本。

BGD在每次更新模型的时候,都要使用全量样本来计算更新的梯度值。如果有m个样本,迭代n轮,那么需要是m*n的计算复杂度。

SGD在每次更新模型的时候,只要当前遍历到的样本来计算更新的梯度值就行了。如果迭代n轮,则只需要n的计算复杂度,因为每轮只计算一个样本。

以上就是BGD和SGD的区别,容易看出,BGD的优势在于计算的是全局最优解,效果较SGD会好一些,劣势在于计算开销大;SGD则相反,优势在于计算开销减小很多,劣势在于计算的是局部最优解,可能最终达不到全局最优解。在数据量大的时候,SGD是较好的折衷选择。

online learning,batch learning&批量梯度下降,随机梯度下降的更多相关文章

  1. 梯度下降&随机梯度下降&批梯度下降

    梯度下降法 ​ 下面的h(x)是要拟合的函数,J(θ)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(θ)就出来了.其中m是训练集的记录条数,j是参数的个数. 梯 ...

  2. NN优化方法对照:梯度下降、随机梯度下降和批量梯度下降

    1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值 ...

  3. L20 梯度下降、随机梯度下降和小批量梯度下降

    airfoil4755 下载 链接:https://pan.baidu.com/s/1YEtNjJ0_G9eeH6A6vHXhnA 提取码:dwjq 梯度下降 (Boyd & Vandenbe ...

  4. 批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解

      梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent ...

  5. 机器学习(ML)十五之梯度下降和随机梯度下降

    梯度下降和随机梯度下降 梯度下降在深度学习中很少被直接使用,但理解梯度的意义以及沿着梯度反方向更新自变量可能降低目标函数值的原因是学习后续优化算法的基础.随后,将引出随机梯度下降(stochastic ...

  6. 监督学习:随机梯度下降算法(sgd)和批梯度下降算法(bgd)

    线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就 ...

  7. sklearn中实现随机梯度下降法(多元线性回归)

    sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系 ...

  8. [Machine Learning] 梯度下降(BGD)、随机梯度下降(SGD)、Mini-batch Gradient Descent、带Mini-batch的SGD

    一.回归函数及目标函数 以均方误差作为目标函数(损失函数),目的是使其值最小化,用于优化上式. 二.优化方式(Gradient Descent) 1.最速梯度下降法 也叫批量梯度下降法Batch Gr ...

  9. batch gradient descent(批量梯度下降) 和 stochastic gradient descent(随机梯度下降)

    批量梯度下降是一种对参数的update进行累积,然后批量更新的一种方式.用于在已知整个训练集时的一种训练方式,但对于大规模数据并不合适. 随机梯度下降是一种对参数随着样本训练,一个一个的及时updat ...

随机推荐

  1. 20144303 《Java程序设计》第七周学习总结

    20144303 <Java程序设计>第七周学习总结 教材学习内容总结 第十二章 Lambda Lambda表达式中this的参考对象以及toString()的接受者,是来自Lambda的 ...

  2. 20145201李子璇《网络对抗》逆向及Bof基础实践

    20145201李子璇<网络对抗>逆向及Bof基础实践 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回 ...

  3. linux系统调用是通过软中断实现的吗

    软中断是利用硬件中断的概念,用软件方式进行模拟,实现宏观上的异步执行效果.很多情况下,软中断和信号有些类似,同时,软中断又是和硬中断相对应的,硬中断是外部设备对CPU的中断,软中断通常是硬中断服务程序 ...

  4. Jquery12 Ajax

    学习要点: 1.Ajax 概述 2.load()方法 3.$.get()和$.post() 4.$.getScript()和$.getJSON() 5.$.ajax()方法 6.表单序列化 Ajax ...

  5. 推荐个非常简单好用的AOP -- MrAdvice

    https://github.com/ArxOne/MrAdvice 太简单了,写好自己的处理类, 作为Attribute加到要拦截的方法或者类上就可以了. Here is the minimal s ...

  6. UBUNTU的默认root密码是多少,修改root密码

    UBUNTU的默认root密码是多少,修改root密码 | 一.Ubuntu的默认root密码是随机的,即每次开机都有一个新的root密码.我们可以在终端输入命令 sudo passwd,然后输入当前 ...

  7. Codeforces Round #365 (Div. 2) B - Mishka and trip

    http://codeforces.com/contest/703/problem/B 题意: 每个点都有一个值,每条边的权值为这两个点相乘.1~n成环.现在有k个城市,城市与其他所有点都相连,计算出 ...

  8. asp.net core开发注意事项

    1.类库的创建尽量选择.net standard. 如果选择.net core 则.net framework不能调用该类库, .net core和.net framework都可以调用.net st ...

  9. git branch 新建,推送与删除

    在开发的许多时候我们都需要使用git提供的分支管理功能. 1.新建本地分支:git checkout -b test  新建一个名为:test 的本地分支. 2.提交本地分支:git push ori ...

  10. mongodb安装、运行

    1.下载安装: 切换到:/usr/local/ mkdir -p mongodb groupadd -g 800 mongodb useradd -u 801 -g mongodb mongodb c ...