题目

Source

http://acm.hdu.edu.cn/showproblem.php?pid=5977

Description

When God made the first man, he put him on a beautiful garden, the Garden of Eden. Here Adam lived with all animals. God gave Adam eternal life. But Adam was lonely in the garden, so God made Eve. When Adam was asleep one night, God took a rib from him and made Eve beside him. God said to them, “here in the Garden, you can do everything, but you cannot eat apples from the tree of knowledge.”
One day, Satan came to the garden. He changed into a snake and went to live in the tree of knowledge. When Eve came near the tree someday, the snake called her. He gave her an apple and persuaded her to eat it. Eve took a bite, and then she took the apple to Adam. And Adam ate it, too. Finally, they were driven out by God and began a hard journey of life.
The above is the story we are familiar with. But we imagine that Satan love knowledge more than doing bad things. In Garden of Eden, the tree of knowledge has n apples, and there are k varieties of apples on the tree. Satan wants to eat all kinds of apple to gets all kinds of knowledge.So he chooses a starting point in the tree,and starts walking along the edges of tree,and finally stops at a point in the tree(starting point and end point may be same).The same point can only be passed once.He wants to know how many different kinds of schemes he can choose to eat all kinds of apple. Two schemes are different when their starting points are different or ending points are different.

Input

There are several cases.Process till end of input.
For each case, the first line contains two integers n and k, denoting the number of apples on the tree and number of kinds of apple on the tree respectively.
The second line contains n integers meaning the type of the i-th apple. Types are represented by integers between 1 and k .
Each of the following n-1 lines contains two integers u and v,meaning there is one edge between u and v.1≤n≤50000, 1≤k≤10

Output

For each case output your answer on a single line.

Sample Input

3 2
1 2 2
1 2
1 3

Sample Output

6

分析

题目大概说一棵树,各个结点都有一个数字(<=k),然后问有几条路径使得路径上所有结点包含了1到k的所有数字。

路径,自然想到树分治解决,因为任何一条路径都在以某个点为根的子树中且过那条根的链。

  • 考虑cnt[S]记录已经统计获得的数字集合为S的路径数量。。

    • 不过这样会发现,新的路径信息与其合并更新答案时,还要枚举它的补集以及补集的超集,这时间复杂度不太好。。
  • 所以直接cnt[S]表示已经统计获得的数字集合为S以及S的超集的路径数量。。
    • 现在问题是新的路径信息如何合并到cnt[S]中,其实只要枚举所有新的路径信息再枚举所有集合状态就OK了,时间复杂度由主定理可知是$O(nlogn2^k)$。。简单粗暴就过了。。

另外。。注意路径的起点和终点是可以一样的。。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 50010 struct Edge{
int v,next;
}edge[MAXN<<1];
int NE,head[MAXN];
void addEdge(int u,int v){
edge[NE].v=v; edge[NE].next=head[u];
head[u]=NE++;
} bool vis[MAXN];
int size[MAXN];
void getsize(int u,int fa){
size[u]=1;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(vis[v] || v==fa) continue;
getsize(v,u);
size[u]+=size[v];
}
}
int mini,cen;
void getcen(int u,int fa,int &tot){
int res=tot-size[u];
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(vis[v] || v==fa) continue;
res=max(res,size[v]);
getcen(v,u,tot);
}
if(res<mini){
mini=res;
cen=u;
}
}
int getcen(int u){
getsize(u,u);
mini=INF;
getcen(u,u,size[u]);
return cen;
} long long cnt[1024];
int rec[MAXN],rn; int type,val[MAXN]; long long ans; void conqur_dfs(int u,int fa,int s){
ans+=cnt[(~s)&((1<<type)-1)];
rec[rn++]=s;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(fa==v || vis[v]) continue;
conqur_dfs(v,u,s|(1<<val[v]));
}
}
void conqur(int u){
memset(cnt,0,sizeof(cnt));
cnt[0]=1;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(vis[v]) continue;
rn=0;
conqur_dfs(v,v,(1<<val[u])|(1<<val[v]));
for(int j=0; j<rn; ++j){
for(int k=0; k<(1<<type); ++k){
if((rec[j]|k)==rec[j]) ++cnt[k];
}
}
}
}
void divide(int u){
u=getcen(u);
vis[u]=1;
conqur(u);
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(vis[v]) continue;
divide(v);
}
} int main(){
int n;
while(~scanf("%d%d",&n,&type)){
for(int i=1; i<=n; ++i){
scanf("%d",val+i);
--val[i];
}
NE=0;
memset(head,-1,sizeof(head));
int a,b;
for(int i=1; i<n; ++i){
scanf("%d%d",&a,&b);
addEdge(a,b);
addEdge(b,a);
}
memset(vis,0,sizeof(vis));
ans=0;
divide(1);
ans*=2;
if(type==1) ans+=n;
printf("%lld\n",ans);
}
return 0;
}

HDU5977 Garden of Eden(树的点分治)的更多相关文章

  1. hdu-5977 Garden of Eden(树分治)

    题目链接: Garden of Eden Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  2. HDU-5977 - Garden of Eden 点分治

    HDU - 5977 题意: 给定一颗树,问树上有多少节点对,节点对间包括了所有K种苹果. 思路: 点分治,对于每个节点记录从根节点到这个节点包含的所有情况,类似状压,因为K<=10.然后处理每 ...

  3. HDU 5977 Garden of Eden (树分治+状态压缩)

    题意:给一棵节点数为n,节点种类为k的无根树,问其中有多少种不同的简单路径,可以满足路径上经过所有k种类型的点? 析:对于路径,就是两类,第一种情况,就是跨过根结点,第二种是不跨过根结点,分别讨论就好 ...

  4. HDU5977 Garden of Eden 【FMT】【树形DP】

    题目大意:求有所有颜色的路径数. 题目分析:参考codeforces997C,先利用基的FMT的性质在$O(2^k)$做FMT,再利用只还原一位的特点在$O(2^k)$还原,不知道为什么网上都要点分治 ...

  5. hdu5977 Garden of Eden

    都不好意思写题解了 跑了4000多ms 纪念下自己A的第二题 (我还有一道freetour II wa20多发没A...呜呜呜 #include<bits/stdc++.h> using ...

  6. HDU 5977 Garden of Eden(点分治求点对路径颜色数为K)

    Problem Description When God made the first man, he put him on a beautiful garden, the Garden of Ede ...

  7. Garden of Eden

    Garden of Eden Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others ...

  8. uva10001 Garden of Eden

    Cellular automata are mathematical idealizations of physical systems in which both space and time ar ...

  9. HDU4812 D Tree(树的点分治)

    题目大概说给一棵有点权的树,输出字典序最小的点对,使这两点间路径上点权的乘积模1000003的结果为k. 树的点分治搞了.因为是点权过根的两条路径的LCA会被重复统计,而注意到1000003是质数,所 ...

随机推荐

  1. javascript运动框架

    下面这个一个运动框架可以控制元素在一个属性上的运动,同时,可以调用回调函数. /* 获取元素某个属性的值 @obj: 对象 @attr: 属性值 */ function getStyle(obj, a ...

  2. 网络第二节——AFNworking

    /** 要使用常规的AFN网络访问 AFHTTPRequestOperationManager *manager = [AFHTTPRequestOperationManager manager]; ...

  3. jvm--4垃圾收集

    6. 垃圾收集GC (1)当需要排查各种内存溢出,内存泄漏等问题,当GC成为系统达到更高性能的瓶颈时,我们就需要对这些自动化的GC进行监控和调节. (2)PC计数器.本地方法栈.虚拟机栈,随方法或者线 ...

  4. JavaScript的==和===运算符

    JavaScript提供两个相等运算符:==和 ===.      简单说,它们的区别是相等运算符( ==)比较两个值是否相等,严格相等运算符( ===)比较它们是否为“同一个值”.如果两个值不是同一 ...

  5. VS2008控件全部消失

    新建VS2008项目之后,本该位于工具箱的控件全部消失不见,只剩下"#13119"提示,修复方法如下: 注:不一定三步都需要用到,仅在当前步骤无效情况下才用到下一步 1.步骤一 ( ...

  6. vue.js 使用小结

    2016年12月10日 17:18:42 星期六 情景: 主要介绍 v-for 循环时对变量的处理方法 主要以table标签为例 1. 为 tr 标签动态添加属性 <tr v-for=" ...

  7. 进程管理supervisor的简单说明

    背景: 项目中遇到有些脚本需要通过后台进程运行,保证不被异常中断,之前都是通过nohup.&.screen来实现,带着能否做一个start/stop/restart/reload的服务启动的想 ...

  8. 汗,Google又调整了编译工具(升级SDK先备份!!!)

    1./tools 下的apkbuilder消失了 方法一.用老版本ADT中的apkbuilder(apkbuilder.bat--windows) 方法二.重新生成build.xml文件 2.aapt ...

  9. [Sass]声明变量

    [Sass]声明变量 定义变量的语法: 在有些编程语言中(如,JavaScript)声明变量都是使用关键词"var"开头,但是在 Sass 不使用这个关键词,而是使用大家都喜欢的美 ...

  10. Flex中的initialize,creationComplete和applicationComp

    转自:http://blog.csdn.net/sjz168/article/details/7244374 1.Application标签中有三个事件initialize,creationCompl ...