CodeForces 388A Fox and Box Accumulation (模拟)
Fox Ciel has n boxes in her room. They have the same size and weight, but they might have different strength. The
i-th box can hold at most
xi boxes on its top (we'll call
xi the strength of the box).
Since all the boxes have the same size, Ciel cannot put more than one box directly on the top of some box. For example, imagine Ciel has three boxes: the first has strength 2, the second has strength 1 and the third has strength
1. She cannot put the second and the third box simultaneously directly on the top of the first one. But she can put the second box directly on the top of the first one, and then the third box directly on the top of the second one. We will call such a construction
of boxes a pile.
Fox Ciel wants to construct piles from all the boxes. Each pile will contain some boxes from top to bottom, and there cannot be more than
xi boxes on the top of
i-th box. What is the minimal number of piles she needs to construct?
The first line contains an integer
n (1 ≤ n ≤ 100). The next line contains
n integers x1, x2, ..., xn (0 ≤ xi ≤ 100).
Output a single integer — the minimal possible number of piles.
3
0 0 10
2
5
0 1 2 3 4
1
4
0 0 0 0
4
9
0 1 0 2 0 1 1 2 10
3
In example 1, one optimal way is to build 2 piles: the first pile contains boxes 1 and 3 (from top to bottom), the second pile contains only box 2.
In example 2, we can build only 1 pile that contains boxes 1, 2, 3, 4, 5 (from top to bottom).
题目大意:一些盒子,数字代表其上面最多还能放多少,且上面放的数字不能大于其以下的。问最少堆几堆
题目分析:暴力模拟。从上往下一堆一堆的取,具体见程序凝视
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; int a[105], hash[105]; int main()
{
int n, ma = -1;
memset(hash, 0, sizeof(hash));
scanf("%d", &n);
for(int i = 0; i < n; i++)
{
scanf("%d", &a[i]);
ma = max(a[i], ma);
hash[a[i]]++;
}
int ans = 0;
while(n)
{
int cnt = 0; //第i堆的个数
for(int i = 0; i <= ma; i++)
{
//有当前重量的,且其压力大于等于上面的个数
//则将其放到以下
while(hash[i] && i >= cnt)
{
hash[i] --; //放了一个,数量减1
cnt++; //这一堆数量加1
n --; //记录总的剩余个数
}
}
ans ++; //记录堆数
}
printf("%d\n", ans);
}
CodeForces 388A Fox and Box Accumulation (模拟)的更多相关文章
- Codeforces 388A - Fox and Box Accumulation
388A - Fox and Box Accumulation 思路: 从小到大贪心模拟. 代码: #include<bits/stdc++.h> using namespace std; ...
- codeforces A. Fox and Box Accumulation 解题报告
题目链接:http://codeforces.com/problemset/problem/388/A 题目意思:有 n 个 boxes,每个box 有相同的 size 和 weight,但是stre ...
- 388A Fox and Box Accumulation
一开始贪心策略想错了! #include<cstdio> #include<algorithm> using namespace std; ]; int main() { in ...
- Codeforces Round #228 (Div. 1) A. Fox and Box Accumulation 贪心
A. Fox and Box Accumulation 题目连接: http://codeforces.com/contest/388/problem/A Description Fox Ciel h ...
- Codeforces Round #228 (Div. 2) C. Fox and Box Accumulation
C. Fox and Box Accumulation time limit per test 1 second memory limit per test 256 megabytes input s ...
- Codeforces Round #228 (Div. 2) C. Fox and Box Accumulation(贪心)
题目:http://codeforces.com/contest/389/problem/C 题意:给n个箱子,给n个箱子所能承受的重量,每个箱子的重量为1: 很简单的贪心,比赛的时候没想出来.... ...
- A. Fox and Box Accumulation
time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...
- cf C. Fox and Box Accumulation
题意:输入一个n,然后输入n个数,问你可以划分多少个序列,序列为:其中一个数为c,在它的前面最多可以有c个数. 思路:先排序,然后对于每一个数逐步的找没有被用过的数,且这个数可以符合条件,然后如果没有 ...
- [codeforces 241]C. Mirror Box
[codeforces 241]C. Mirror Box 试题描述 Mirror Box is a name of a popular game in the Iranian National Am ...
随机推荐
- mac 安装 mysql 配置
前言:下面主要介绍2种安装方法以及后续的配置,希望对大家有帮助.(推荐通过安装包的形式安装) 1. 使用安装包安装 mysql 双击打开安装文件 双击pkg文件安装 一 ...
- [03]使用阿里RAP搭建前端Mock Server
MockServer可以减少前端开发对后端的依赖,提高前端开发的效率,同时也利于团队的协作. 什么是RAP? RAP是阿里团队出的一款WEB接口管理工具,帮助开发人员更高效的管理接口文档,同时通过分析 ...
- C++/C---字符串
其他类型转字符串 itoa 功 能:把一整数转换为字符串用 法:char *itoa(int value, char *string, int radix);详细解释:itoa是英文integer t ...
- 创建型设计模式之工厂模式(Abstract Factory)
结构 意图 提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类. 适用性 一个系统要独立于它的产品的创建.组合和表示时. 一个系统要由多个 ...
- source insight setting
adjust source code font size Options -> File Type Options -> Screen Font -> Size adjust dis ...
- 11.OpenStack 安装监控和业务流程服务
安装业务流程模块 安装和配置业务流程 创建数据库 mysql -uroot -ptoyo123 CREATE DATABASE heat; GRANT ALL PRIVILEGES ON heat.* ...
- Git-stash操作
git stash git pull git stash pop git stash pop: 从Git栈中读取最近一次保存的内容,恢复工作区的相关内容.由于可能存在多个Stash的内容,所以用栈来管 ...
- 简述web工程师的职责与学习
最近两年web突然很火,也有很多人涌入这一行,但这行实际上是进来的人很多,出去的人也很多. 在我眼里,Web前端开发工程师的职责有:1.Web前端表现层及与前后端交互的架构设计和开发2.配合后台开发人 ...
- HTML,DIV+CSS,js,JQ,UI-WEB前端设计经验
目前比较全的CSS重设(reset)方法总结 在当今网页设计/开发实践中,使用CSS来为语义化的(X)HTML标记添加样式风格是重要的关键.在设计师们的梦想中都存在着这样的一个完美世界:所有的浏览 ...
- war导出问题myeclpise
内附破解文件以及myeclipse10.7.1导出war问题解决办法一.原作者的PJ程序在myeclipse10.7.1环境下测试通过(win7 x64) 按照步骤操作就可以完成PJ过程.PJ前先将c ...