【BZOJ2337】[HNOI2011]XOR和路径

Description

题解:异或的期望不好搞?我们考虑按位拆分一下。

我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少(妈呀好啰嗦),设d[i]表示i的度数。然后对于某条边(a,b),如果它的权值是1,那么f[b]+=(1-f[a])/d[a];如果它的权值是0,那么f[b]+=f[a]/d[a],然后我们移个项,就变成了一堆方程组求解,直接高斯消元。

别忘了f[n]=0!

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
using namespace std;
typedef long double ld;
int d[110];
ld v[110][110],ans;
int n,m;
int pa[10010],pb[10010],pc[10010];
ld calc(int x)
{
int i,j,k;
for(i=1;i<=n;i++) for(j=1;j<=n+1;j++) v[i][j]=0;
for(i=1;i<=m;i++)
{
if(pc[i]&x)
{
v[pa[i]][pb[i]]+=1,v[pa[i]][n+1]+=1;
if(pa[i]!=pb[i]) v[pb[i]][n+1]+=1,v[pb[i]][pa[i]]+=1;
}
else
{
v[pa[i]][pb[i]]-=1;
if(pa[i]!=pb[i]) v[pb[i]][pa[i]]-=1;
}
}
for(i=1;i<=n;i++) v[i][i]+=d[i];
for(i=1;i<=n+1;i++) v[n][i]=0;
v[n][n]=1;
for(i=1;i<=n;i++)
{
for(j=i;j<=n;j++) if(fabs(v[i][i])<fabs(v[j][i])) for(k=i;k<=n+1;k++) swap(v[i][k],v[j][k]);
if(fabs(v[i][i])<1e-7) continue;
for(j=n+1;j>=i;j--) v[i][j]/=v[i][i];
for(j=1;j<=n;j++) if(i!=j)
{
for(k=1;k<=n+1;k++) if(k!=i) v[j][k]-=v[j][i]*v[i][k];
v[j][i]=0;
}
}
return v[1][n+1];
}
int main()
{
int i,a,b,c;
scanf("%d%d",&n,&m);
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&pa[i],&pb[i],&pc[i]);
d[pa[i]]++;
if(pa[i]!=pb[i]) d[pb[i]]++;
}
for(i=1;i<1<<30;i<<=1) ans+=i*calc(i);
printf("%.3lf",(double)ans);
return 0;
}

【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元的更多相关文章

  1. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  2. BZOJ2337: [HNOI2011]XOR和路径(期望 高斯消元)

    题意 题目链接 Sol 期望的线性性对xor运算是不成立的,但是我们可以每位分开算 设\(f[i]\)表示从\(i\)到\(n\)边权为1的概率,统计答案的时候乘一下权值 转移方程为 \[f[i] = ...

  3. 洛谷P3211 [HNOI2011]XOR和路径(期望dp+高斯消元)

    传送门 高斯消元还是一如既往的难打……板子都背不来……Kelin大佬太强啦 不知道大佬们是怎么发现可以按位考虑贡献,求出每一位是$1$的概率 然后设$f[u]$表示$u->n$的路径上这一位为$ ...

  4. BZOJ 2337 [HNOI2011]XOR和路径 ——期望DP

    首先可以各位分开求和 定义$f(i)$表示从i到n的期望值,然后经过一些常识,发现$f(n)=1$的时候的转移,然后直接转移,也可以找到$f(n)=0$的转移. 然后高斯消元31次就可以了. #inc ...

  5. HDU 2262 Where is the canteen 期望dp+高斯消元

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS ...

  6. hdu4418 Time travel 【期望dp + 高斯消元】

    题目链接 BZOJ4418 题解 题意:从一个序列上某一点开始沿一个方向走,走到头返回,每次走的步长各有概率,问走到一点的期望步数,或者无解 我们先将序列倍长形成循环序列,\(n = (N - 1) ...

  7. 【noi2019集训题1】 脑部进食 期望dp+高斯消元

    题目大意:有n个点,m条有向边,每条边上有一个小写字母. 有一个人从1号点开始在这个图上随机游走,游走过程中他会按顺序记录下走过的边上的字符. 如果在某个时刻,他记录下的字符串中,存在一个子序列和S2 ...

  8. LightOJ 1151 Snakes and Ladders 期望dp+高斯消元

    题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定   而且 ...

  9. P4457-[BJOI2018]治疗之雨【期望dp,高斯消元】

    正题 题目链接:https://www.luogu.com.cn/problem/P4457 题目大意 开始一个人最大生命值为\(n\),剩余\(hp\)点生命,然后每个时刻如果生命值没有满那么有\( ...

随机推荐

  1. RESTful接口签名认证实现机制

    RESTful接口 互联网发展至今,催生出了很多丰富多彩的应用,极大地调动了人们对这些应用的使用热情.但同时也为互联网应用带来了严峻的考验.具体体现在以下几个方面: 1.     部署方式的改变:当用 ...

  2. CKEditor+SWFUpload实现功能较为强大的编辑器(二)---SWFUpload配置

    在前面配置完CKEditor之后,就可以拥有一个功能挺强大的编辑器了 但是现在还不够,还要能够在发表文字中插入自己电脑上的图片 CKEditor自己好像有这个功能,但是实在是...没法说,很难用(这是 ...

  3. idea 转普通项目为maven 项目

    1.项目上右键 Add Framework Support. 2.选择maven,点击OK.

  4. mybatis部分版本异常invalid comparison: java.util.Date and java.lang.String

    严重: Servlet.service() for servlet [spring] in context with path [] threw exception [Request processi ...

  5. ARM指令中的函数调用

    1. 重要寄存器 SP 栈指针,  每一种异常模式都有其自己独立的r13,它通常指向异常模式所专用的堆栈,也就是说五种异常模式.非异常模式(用户模式和系统模式),都有各自独立的堆栈,用不同的堆栈指针来 ...

  6. Android学习(一) 按钮的事件

    用户登录 1.内部匿名类方式实现 layout <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/an ...

  7. WAMP集成开发环境

    集成开发环境WampServer能够摆脱环境配置的烦恼,对初学者来说,能够快速编写代码,现把安装过程介绍一下. W:Windows A:Apache M:MySql P:PHP 是一套整合在一起的PH ...

  8. 【IOS】mac终端运行.sh文件总是提示permission denied

    如果我目录jni有一个list.sh文件 我直接 nxgametekiMacBook-Air:jni luonan$  ./list.sh ../../Classes 提示 permission de ...

  9. Oracle 重置序列

    Oracle将自增sequence重置为初始值1时,若是删除再重建,那么依赖它的函数和存储过程将失效,需要重新编译. 这里利用相反的过程,利用负值步长参数,将递增值改为(sequence.NEXTVA ...

  10. VBA 按列查找小工具类似lookUp函数

    如上图,查找A列的数据在D,F列是否存在,如果存在背景色变绿,如果不存在则A列的背景色变红. 直接贴上代码: Private Sub CommandButton1_Click() Call lookU ...