【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元
【BZOJ2337】[HNOI2011]XOR和路径
Description
题解:异或的期望不好搞?我们考虑按位拆分一下。
我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少(妈呀好啰嗦),设d[i]表示i的度数。然后对于某条边(a,b),如果它的权值是1,那么f[b]+=(1-f[a])/d[a];如果它的权值是0,那么f[b]+=f[a]/d[a],然后我们移个项,就变成了一堆方程组求解,直接高斯消元。
别忘了f[n]=0!
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
using namespace std;
typedef long double ld;
int d[110];
ld v[110][110],ans;
int n,m;
int pa[10010],pb[10010],pc[10010];
ld calc(int x)
{
int i,j,k;
for(i=1;i<=n;i++) for(j=1;j<=n+1;j++) v[i][j]=0;
for(i=1;i<=m;i++)
{
if(pc[i]&x)
{
v[pa[i]][pb[i]]+=1,v[pa[i]][n+1]+=1;
if(pa[i]!=pb[i]) v[pb[i]][n+1]+=1,v[pb[i]][pa[i]]+=1;
}
else
{
v[pa[i]][pb[i]]-=1;
if(pa[i]!=pb[i]) v[pb[i]][pa[i]]-=1;
}
}
for(i=1;i<=n;i++) v[i][i]+=d[i];
for(i=1;i<=n+1;i++) v[n][i]=0;
v[n][n]=1;
for(i=1;i<=n;i++)
{
for(j=i;j<=n;j++) if(fabs(v[i][i])<fabs(v[j][i])) for(k=i;k<=n+1;k++) swap(v[i][k],v[j][k]);
if(fabs(v[i][i])<1e-7) continue;
for(j=n+1;j>=i;j--) v[i][j]/=v[i][i];
for(j=1;j<=n;j++) if(i!=j)
{
for(k=1;k<=n+1;k++) if(k!=i) v[j][k]-=v[j][i]*v[i][k];
v[j][i]=0;
}
}
return v[1][n+1];
}
int main()
{
int i,a,b,c;
scanf("%d%d",&n,&m);
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&pa[i],&pb[i],&pc[i]);
d[pa[i]]++;
if(pa[i]!=pb[i]) d[pb[i]]++;
}
for(i=1;i<1<<30;i<<=1) ans+=i*calc(i);
printf("%.3lf",(double)ans);
return 0;
}
【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元的更多相关文章
- BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元
BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...
- BZOJ2337: [HNOI2011]XOR和路径(期望 高斯消元)
题意 题目链接 Sol 期望的线性性对xor运算是不成立的,但是我们可以每位分开算 设\(f[i]\)表示从\(i\)到\(n\)边权为1的概率,统计答案的时候乘一下权值 转移方程为 \[f[i] = ...
- 洛谷P3211 [HNOI2011]XOR和路径(期望dp+高斯消元)
传送门 高斯消元还是一如既往的难打……板子都背不来……Kelin大佬太强啦 不知道大佬们是怎么发现可以按位考虑贡献,求出每一位是$1$的概率 然后设$f[u]$表示$u->n$的路径上这一位为$ ...
- BZOJ 2337 [HNOI2011]XOR和路径 ——期望DP
首先可以各位分开求和 定义$f(i)$表示从i到n的期望值,然后经过一些常识,发现$f(n)=1$的时候的转移,然后直接转移,也可以找到$f(n)=0$的转移. 然后高斯消元31次就可以了. #inc ...
- HDU 2262 Where is the canteen 期望dp+高斯消元
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS ...
- hdu4418 Time travel 【期望dp + 高斯消元】
题目链接 BZOJ4418 题解 题意:从一个序列上某一点开始沿一个方向走,走到头返回,每次走的步长各有概率,问走到一点的期望步数,或者无解 我们先将序列倍长形成循环序列,\(n = (N - 1) ...
- 【noi2019集训题1】 脑部进食 期望dp+高斯消元
题目大意:有n个点,m条有向边,每条边上有一个小写字母. 有一个人从1号点开始在这个图上随机游走,游走过程中他会按顺序记录下走过的边上的字符. 如果在某个时刻,他记录下的字符串中,存在一个子序列和S2 ...
- LightOJ 1151 Snakes and Ladders 期望dp+高斯消元
题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定 而且 ...
- P4457-[BJOI2018]治疗之雨【期望dp,高斯消元】
正题 题目链接:https://www.luogu.com.cn/problem/P4457 题目大意 开始一个人最大生命值为\(n\),剩余\(hp\)点生命,然后每个时刻如果生命值没有满那么有\( ...
随机推荐
- 以lstm+ctc对汉字识别为例对tensorflow 中的lstm,ctc loss的调试
#-*-coding:utf8-*- __author = "buyizhiyou" __date = "2017-11-21" ''' 单步调试,结合汉字的识 ...
- 为什么实现Serializbale接口就能够进行序列化?
从所周知,Serializbale接口是个空的接口,并没有定义任何方法.那么问题来了,为什么需要序列化的接口只要实现Serializbale接口就能够进行序列化? 这要从序列化过程的源码说起.举个例子 ...
- SSO单点登录系列6:cas单点登录防止登出退出后刷新后退ticket失效报500错
这个问题之前就发现过,最近有几个哥们一直在问我这个怎么搞,我手上在做另一个项目,cas就暂时搁浅了几周.现在我们来一起改一下你的应用(client2/3)的web.xml来解决这个2b问题,首先看下错 ...
- lodash 展平数组 flatten flattenDeep
_.flatten(array) 向上一级展平数组嵌套 <!DOCTYPE html> <html lang="zh"> <head> < ...
- .mata. _root_ (转)
HRegionServer 里面存放了很多的HRegion,而且每一个HRegion都有一个唯一标识(表名+开始主键+唯一ID),这个唯一标识符在每一个HRegion中都有存储. .mata.表存的数 ...
- Hbase笔记:批量导入
工作中可能会有对HBase的复杂操作,我们现在对HBase的操作太简单了.复杂操作一般用HBaseScan操作,还有用框架对HBase进行复杂操作,iparler,sharker.我们说HBase是数 ...
- Java Learning Path(五)资源篇
Java Learning Path(五)资源篇 1. http://java.sun.com/ (英文) Sun的Java网站,是一个应该经常去看的地方.不用多说. 2.http://www-900 ...
- win10 microsoft edge 浏览器收藏夹位置
1.打开文件夹,找到(注意 用户名 改为你自己的用户名) C:\Users\用户名\AppData\Local\Packages\Microsoft.MicrosoftEdge_8wekyb3d8bb ...
- 转 WCF WebService区别
下面我们来详细讨论一下二者的区别.Web Service和WCF的到底有什么区别. [1]Web Service:严格来说是行业标准,也就是Web Service 规范,也称作WS-*规范,既不是框架 ...
- 工作总结 无法确定条件表达式的类型,因为“<null>”和“System.DateTime”之间没有隐式转换 解决办法 object——Nullable<T> (可空类型)
可空值类型 备注 一种类型认为是可以为 null,如果它可以分配一个值,也可以分配null,这意味着类型具有无论如何没有值. 默认情况下,所有都引用类型,如String,是否可以为 null, ...