Bag of mice(概率DP)
The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.
They take turns drawing a mouse from a bag which initially contains w white and bblack mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice).Princess draws first. What is the probability of the princess winning?
If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.
Input
The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).
Output
Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed 10 - 9.
Example
- 1 3
- 0.500000000
- 5 5
Output
0.658730159
题意: 公主和龙玩一个抓老鼠的游戏。袋子里,有两种老鼠,W只白老鼠,b只黑老鼠。一次抓出一只老鼠,公主先抓,龙后抓,龙抓出一只老鼠后,剩下的老鼠中会逃跑掉任意一只(跑掉的这只不算任何人抓的)。先抓到白老鼠的获胜(公主除抓到白老鼠获胜外,其余情况都算输),求公主获胜的概率。
题解:
思考: 对于 w 只白老鼠,b 只黑老鼠,公主要赢的情况
(一) 直接抓到一只白老鼠,概率为 p1 = w/(w+b)
(二) 抓到一只黑老鼠,但是龙也抓住一只黑老鼠,概率为
p2 = (1-p1)*(b-1)/(w+b-1) 然后跑掉一只老鼠,再分两种
跑掉一只白的 p3=w/(w+b-2) 变为 w-1 , b-2 的状态
跑掉一只黑的 p4=(b-2)/(w+b-2) 变为 w , b-3 的状态
dp[i][j] 代表 i 只白老鼠, j 只黑老鼠公主获胜的概率
dp[i][j]=p1 + p2*p3*dp[i-1][j-2] + p2*p3*dp[i][j-3];
- #include <iostream>
- #include <stdio.h>
- using namespace std;
- #define MAXN 1005
- double dp[MAXN][MAXN];
- void Init()
- {
- for (int i=;i<MAXN;i++)
- {
- for (int j=;j<MAXN;j++)
- {
- double p1=,p2=;
- if (i>=)
- p1 = (i*1.0)/(i+j); //公主赢
- if (j>=)
- p2 = (-p1)*(j-1.0)/(i+j-); //龙抓黑
- double p3 = ,p4 = ;
- if (i>=&&j>=) p3 = (i*1.0)/(i+j-);
- if (j>=) p4 =(j-2.0)/(i+j-);
- dp[i][j]= p1;
- if (j>=) dp[i][j]+=p2*p3*dp[i-][j-];
- if (j>=) dp[i][j]+=p2*p4*dp[i][j-];
- }
- }
- }
- int main()
- {
- Init();
- int w,b;
- scanf("%d%d",&w,&b);
- printf("%.12lf\n",dp[w][b]);
- return ;
- }
Bag of mice(概率DP)的更多相关文章
- Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题
除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...
- Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp
题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...
- CF 148D Bag of mice 概率dp 难度:0
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- codeforce 148D. Bag of mice[概率dp]
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- codeforces 148D Bag of mice(概率dp)
题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...
- Codeforces 148D Bag of mice 概率dp(水
题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...
- 抓老鼠 codeForce 148D - Bag of mice 概率DP
设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...
- Codeforces Round #105 D. Bag of mice 概率dp
http://codeforces.com/contest/148/problem/D 题目意思是龙和公主轮流从袋子里抽老鼠.袋子里有白老师 W 仅仅.黑老师 D 仅仅.公主先抽,第一个抽出白老鼠的胜 ...
- codeforces105d Bag of mice ——概率DP
Link: http://codeforces.com/problemset/problem/148/D Refer to: http://www.cnblogs.com/kuangbin/archi ...
随机推荐
- 【PA2012】【BZOJ4289】Tax
Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值.求从起点1到点N的最小代价. 起点的代价是离开起点的边的边权.终点的代价是进入终点的边的 ...
- 精通Hibernate——域对象之间的关系
在域模型中.类之间存在四种关系 1.关联(Association) 类之间的引用关系,能够有一对一.一对多和多对多,比如customer与order之间就是一对多 public class Order ...
- javaweb项目自定义错误页面
当我们把一个web项目成功发布出去,但是有些页面还有待完善的时候,会出现404错误页面.这个会给用户很差的体验.如何将这些错误页面修改为自定义的错误页界面,给用户一些友好的提示呢? 首先我们在web. ...
- Gizmos 辅助线框
Gizmos are used to give visual debugging or setup aids in the scene view. Gizmos是用于在场景视图可视化调试或辅助设置. ...
- C1:工厂模式 Factory
最常用的实例化对象模式,用工厂方法替代了实例化对象. 应用场景:A.一个类的子类经常面临着剧烈变化,但却拥有较稳定的接口,或者说拥有相同的接口.工厂方法定义一个用于创建对象的接口,让子类来决定创建那个 ...
- axios 处理并发请求
//同时发起多个请求时的处理 axios.all([get1(), get2()]) .then(axios.spread(function (res1, res2) { // 只有两个请求都完成才会 ...
- 把质量控制工作往前推进(1)——安装sonarqube
曾经关注点一直在怎么提高应用程序的质量,没太在意代码级别的质量.近期由于某些因素的推动,须要关注到代码级别的质量去,把质量工作尽量往前推,也符合质量控制的原则. 试用了一下sonarqube(老版本 ...
- 【SpringMVC学习08】SpringMVC中实现文件上传
之前有写过一篇struts2实现的文件上传,这一篇博文主要来总结下springmvc实现文件上传的步骤.首先来看一下单个文件的上传,然后再来总结下多个文件上传. 1. 环境准备 springmvc上传 ...
- List of CentOS Mirrors
From:https://www.centos.org/download/mirrors/ CentOS welcomes new mirror sites. If you are consideri ...
- MQTT--linux安装部署(CentOS)
OS环境:CentOS6.5 1.安装依赖 yum -y install gcc gcc-c++ openssl-devel c-ares-devel libuuid-devel wget cmake ...