Uva12230Crossing Rivers

问题:

You live in a village but work in another village. You decided to follow the straight path between your house (A) and the working place (B), but there are several rivers you need to cross. Assume B is to the right of A, and all the rivers lie between them. Fortunately, there is one “automatic” boat moving smoothly in each river. When you arrive the left bank of a river, just wait for the boat, then go with it. You’re so slim that carrying you does not change the speed of any boat.

Days and days after, you came up with the following question: assume each boat is independently placed at random at time 0, what is the expected time to reach B from A? Your walking speed is always 1. To be more precise, for a river of length L, the distance of the boat (which could be regarded as a mathematical point) to the left bank at time 0 is uniformly chosen from interval [0, L], and the boat is equally like to be moving left or right, if it’s not precisely at the river bank.

Input

There will be at most 10 test cases. Each case begins with two integers n and D, where n (0 ≤ n ≤ 10) is the number of rivers between A and B, D (1 ≤ D ≤ 1000) is the distance from A to B. Each of the following n lines describes a river with 3 integers: p, L and v (0 ≤ p < D, 0 < L ≤ D, 1 ≤ v ≤ 100). p is the distance from A to the left bank of this river, L is the length of this river, v is the speed of the boat on this river. It is guaranteed that rivers lie between A and B, and they don’t overlap. The last test case is followed by n = D = 0, which should not be processed.

Output

For each test case, print the case number and the expected time, rounded to 3 digits after the decimal point. Print a blank line after the output of each test case.

Sample Input

1 1

0 1 2

0 1

0 0

Sample Output

Case 1: 1.000

Case 2: 1.000

题目大意:

有个人每天要去公司上班,每次会经过N条河,家和公司的距离为D,默认在陆地的速度为1,给出N条河的信息,包括起始坐标p,宽度L,以及船的速度v。船会往返在河的两岸,人到达河岸时,船的位置是随机的(往返中)。问说人达到公司所需要的期望时间。

思路:

过每条河最坏的情况是t=3*L/v; 即去的时候船刚刚走。

过没条河最优的情况是t=L/v;    即去的时候船刚刚来。

由于船是均匀发布的,符合线性性质,所以平均下来,过每条河的时间t=2*L/v。

代码:

 #include"bits/stdc++.h"

 #define db double
#define ll long long
#define vl vector<ll>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define rep(i, n) for(int i=0;i<n;i++)
using namespace std;
const int NN = 1e6 + ;
const int mod = 1e9 + ;
const int MOD = ;
const db PI = acos(-1.0);
const db eps = 1e-;
const ll INF = 0x3fffffffffffffff;
int n,d;
int main()
{
int t=;
while(scanf("%d%d",&n,&d)==&&n||d){
db ans=;
for(int i=;i<n;i++){
int p,l,v;
ci(p),ci(l),ci(v);
ans+=2.0*l/v;
d-=l;
}
ans+=d;
printf("Case %d: %.3f\n",t++,ans);
puts("");
}
return ;
}

Uva12230Crossing Rivers 数学的更多相关文章

  1. Uva12230Crossing Rivers (数学期望)

    问题: You live in a village but work in another village. You decided to follow the straight path betwe ...

  2. HDU3232 Crossing Rivers 数学期望问题

    Crossing Rivers                                                                                     ...

  3. uva12230Crossing Rivers

    数学期望. 过每条河的时间的可能在[L/v,3*L/v]间均匀分布,数学期望为2*L/v. 然后在加上在陆上走的时间. #include<cstdio> #include<algor ...

  4. Uva - 12230 Crossing Rivers (数学期望)

    你住在村庄A,每天需要过很多条河到另一个村庄B上班,B在A的右边,所有的河都在A,B之间,幸运的是每条船上都有自由移动的自动船, 因此只要到达河左岸然后等船过来,在右岸下船,上船之后船的速度不变.现在 ...

  5. UVA12230 Crossing Rivers (数学期望)

    题目链接 题意翻译 一个人每天需要从家去往公司,然后家与公司的道路是条直线,长度为 \(D\). 同时路上有 \(N\) 条河,给出起点和宽度\(W_i\) , 过河需要乘坐速度为\(V_i\) 的渡 ...

  6. 【整理】简单的数学期望和概率DP

    数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...

  7. hdu 3232 Crossing Rivers(期望 + 数学推导 + 分类讨论,水题不水)

    Problem Description   You live in a village but work in another village. You decided to follow the s ...

  8. UVa 12230 && HDU 3232 Crossing Rivers (数学期望水题)

    题意:你要从A到B去上班,然而这中间有n条河,距离为d.给定这n条河离A的距离p,长度L,和船的移动速度v,求从A到B的时间的数学期望. 并且假设出门前每条船的位置是随机的,如果不是在端点,方向也是不 ...

  9. UVa 12230 - Crossing Rivers(数学期望)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

随机推荐

  1. Python模块入门(一)

    一.模块介绍 模块就是一系列功能的集合体 模块有三种来源: 1.内置模块:python内提供的模块 2.第三方模块:由第三方提供的模块 3.自定义模块:自行定义的模块 模块的格式: 1.使用pytho ...

  2. Excel 解析 (大文件读取)BingExcel

    最近在整理一个excel读取与写出的orm框架.使用的saxreader方式,支持百万级别的excel读取. 并且在通常使用中提供了监听的读取方式.如感兴趣的朋友可以稍微了解下 ,项目地址https: ...

  3. mysql:用cmd启动mysql服务被拒绝原因

    原因是命令行的权限不够,需要以管理员模式运行,然后输入net start mysql  即可启动mysql服务

  4. 笨办法学Python(十一)

    习题 11: 提问 我已经出过很多打印相关的练习,让你习惯写简单的东西,但简单的东西都有点无聊,现在该跟上脚步了.我们现在要做的是把数据读到你的程序里边去.这可能对你有点难度,你可能一下子不明白,不过 ...

  5. TP5.1:依赖注入、绑定一个类到容器里、绑定一个闭包到容器中

    依赖注入 1.在application中创建一个文件夹,名字为commom,commom文件夹中创建被注入文件夹,在被注入文件夹中创建一个名为demo.php的文件 2.在demo.php中输入: 3 ...

  6. 了解Web及网络基础(二)

    HTTP报文分为两种,HTTP请求报文跟HTTP响应报文. HTTP请求报文的结构如下: 其中,请求行中包括的内容有方法.URI和HTTP版本,请求首部字段.通用首部字段和实体首部字段隶属于HTTP首 ...

  7. Git由来

    很多人都知道,Linus在1991年创建了开源的Linux,从此,Linux系统不断发展,已经成为最大的服务器系统软件了. Linus虽然创建了Linux,但Linux的壮大是靠全世界热心的志愿者参与 ...

  8. 利用Excel导入数据到SAP C4C

    假设要导入一个Account数据到C4C系统. 工作中心Data Workbench,工作中心视图Import,点download metadata: 会下载一个压缩包到本地. 进入文件夹Templa ...

  9. 【转载】#346 - Polymorphism

    Recall that polymorphism is one of the three core principles of object-oriented programming. Polymor ...

  10. hash函数的选择

    哈稀函数按照定义可以实现一个伪随机数生成器(PRNG),从这个角度可以得到一个公认的结论:哈希函数之间性能的比较可以通过比较其在伪随机生成方面的比较来衡量. 一般来说,对任意一类的数据存在一个理论上完 ...