Uva12230Crossing Rivers 数学
Uva12230Crossing Rivers
问题:
You live in a village but work in another village. You decided to follow the straight path between your house (A) and the working place (B), but there are several rivers you need to cross. Assume B is to the right of A, and all the rivers lie between them. Fortunately, there is one “automatic” boat moving smoothly in each river. When you arrive the left bank of a river, just wait for the boat, then go with it. You’re so slim that carrying you does not change the speed of any boat.
Days and days after, you came up with the following question: assume each boat is independently placed at random at time 0, what is the expected time to reach B from A? Your walking speed is always 1. To be more precise, for a river of length L, the distance of the boat (which could be regarded as a mathematical point) to the left bank at time 0 is uniformly chosen from interval [0, L], and the boat is equally like to be moving left or right, if it’s not precisely at the river bank.
Input
There will be at most 10 test cases. Each case begins with two integers n and D, where n (0 ≤ n ≤ 10) is the number of rivers between A and B, D (1 ≤ D ≤ 1000) is the distance from A to B. Each of the following n lines describes a river with 3 integers: p, L and v (0 ≤ p < D, 0 < L ≤ D, 1 ≤ v ≤ 100). p is the distance from A to the left bank of this river, L is the length of this river, v is the speed of the boat on this river. It is guaranteed that rivers lie between A and B, and they don’t overlap. The last test case is followed by n = D = 0, which should not be processed.
Output
For each test case, print the case number and the expected time, rounded to 3 digits after the decimal point. Print a blank line after the output of each test case.
Sample Input
1 1
0 1 2
0 1
0 0
Sample Output
Case 1: 1.000
Case 2: 1.000
题目大意:
有个人每天要去公司上班,每次会经过N条河,家和公司的距离为D,默认在陆地的速度为1,给出N条河的信息,包括起始坐标p,宽度L,以及船的速度v。船会往返在河的两岸,人到达河岸时,船的位置是随机的(往返中)。问说人达到公司所需要的期望时间。
思路:
过每条河最坏的情况是t=3*L/v; 即去的时候船刚刚走。
过没条河最优的情况是t=L/v; 即去的时候船刚刚来。
由于船是均匀发布的,符合线性性质,所以平均下来,过每条河的时间t=2*L/v。
代码:
#include"bits/stdc++.h" #define db double
#define ll long long
#define vl vector<ll>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define rep(i, n) for(int i=0;i<n;i++)
using namespace std;
const int NN = 1e6 + ;
const int mod = 1e9 + ;
const int MOD = ;
const db PI = acos(-1.0);
const db eps = 1e-;
const ll INF = 0x3fffffffffffffff;
int n,d;
int main()
{
int t=;
while(scanf("%d%d",&n,&d)==&&n||d){
db ans=;
for(int i=;i<n;i++){
int p,l,v;
ci(p),ci(l),ci(v);
ans+=2.0*l/v;
d-=l;
}
ans+=d;
printf("Case %d: %.3f\n",t++,ans);
puts("");
}
return ;
}
Uva12230Crossing Rivers 数学的更多相关文章
- Uva12230Crossing Rivers (数学期望)
问题: You live in a village but work in another village. You decided to follow the straight path betwe ...
- HDU3232 Crossing Rivers 数学期望问题
Crossing Rivers ...
- uva12230Crossing Rivers
数学期望. 过每条河的时间的可能在[L/v,3*L/v]间均匀分布,数学期望为2*L/v. 然后在加上在陆上走的时间. #include<cstdio> #include<algor ...
- Uva - 12230 Crossing Rivers (数学期望)
你住在村庄A,每天需要过很多条河到另一个村庄B上班,B在A的右边,所有的河都在A,B之间,幸运的是每条船上都有自由移动的自动船, 因此只要到达河左岸然后等船过来,在右岸下船,上船之后船的速度不变.现在 ...
- UVA12230 Crossing Rivers (数学期望)
题目链接 题意翻译 一个人每天需要从家去往公司,然后家与公司的道路是条直线,长度为 \(D\). 同时路上有 \(N\) 条河,给出起点和宽度\(W_i\) , 过河需要乘坐速度为\(V_i\) 的渡 ...
- 【整理】简单的数学期望和概率DP
数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...
- hdu 3232 Crossing Rivers(期望 + 数学推导 + 分类讨论,水题不水)
Problem Description You live in a village but work in another village. You decided to follow the s ...
- UVa 12230 && HDU 3232 Crossing Rivers (数学期望水题)
题意:你要从A到B去上班,然而这中间有n条河,距离为d.给定这n条河离A的距离p,长度L,和船的移动速度v,求从A到B的时间的数学期望. 并且假设出门前每条船的位置是随机的,如果不是在端点,方向也是不 ...
- UVa 12230 - Crossing Rivers(数学期望)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
随机推荐
- 特殊的流程控制语句break continue exit
break语句可以结束当前的for.foreach.while.do-while.或者switch的执行. for($i=1; $i<10; $i++) { if($i == 5) { echo ...
- AndroidStudio多AppId多渠道快速打包
一直感觉AndroidStudio没有eclipse快,但是最近由于遇到一个问题不得不将工程迁移到AndroidStudio上,迁移后之前在eclipse上所做的所有批量打包又得重新在AndroidS ...
- Android - 通过真实案例学习解内存泄漏问题,最终发现Android原生Bug
作为一个Android新手小白,刚到新公司,最近的工作就是在学习解各类Bug.转型之初,面临各种新知识,会有压力,但是学习的过程是快乐的. 上周刚遇上一类bug,就是应用的内存泄漏问题.最终通过前辈的 ...
- 分布式爬虫-Kafka监控
分布式爬虫-Kafka监控 1.介绍
- 从HTTP响应头判断是否命中CDN
腾讯云: X-Cache-Lookup:Hit From MemCache 表示命中CDN节点的内存X-Cache-Lookup:Hit From Disktank 表示命中CDN节点的磁盘X-Cac ...
- STM32-开发环境搭建-STM32CubeMX-安装及配置
STM32CubeMX系列教程之1.流水灯 刚刚接触到STM32CubeMX软件,感觉挺有意思,动动鼠标使STM32开发变得简单,特写文与大家分享.但具体性能如何还需测试. 硬件开发中的流水灯相当于软 ...
- SAP CRM WebClient UI和Hybris backoffice UI开发的相同点
CRM WebClient和Hybris backoffice的UI开发都不需要开发人员手写原生的html代码. CRM WebClient UI 在CRM WebUI workbench里,开发人员 ...
- Uva 10375 选择与除法 唯一分解定理
题目链接:https://vjudge.net/contest/156903#problem/E 题意:已知 求:C(p,q)/C(r,s) 其中p,q,r,s都是10^4,硬算是肯定超数据类型的. ...
- 认识http客户端
最简单的http客户端就是我们的浏览器,浏览器地址输入baidu.com,就会返回响应内容,打开network,都是http请求,第一个就是www.baidu.com的请求,旁边第一个General就 ...
- spring教程(一):简单实现(转)
转:https://www.cnblogs.com/Lemon-i/p/8398263.html 一.概念介绍 1. 一站式框架:管理项目中的对象.spring框架性质是容器(对象容器) 2. 核心 ...