题目链接:

D. Powerful array

time limit per test

5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary subarray al, al + 1..., ar, where 1 ≤ l ≤ r ≤ n. For every positive integer s denote by Ks the number of occurrences of s into the subarray. We call the power of the subarray the sum of productsKs·Ks·s for every positive integer s. The sum contains only finite number of nonzero summands as the number of different values in the array is indeed finite.

You should calculate the power of t given subarrays.

Input

First line contains two integers n and t (1 ≤ n, t ≤ 200000) — the array length and the number of queries correspondingly.

Second line contains n positive integers ai (1 ≤ ai ≤ 106) — the elements of the array.

Next t lines contain two positive integers lr (1 ≤ l ≤ r ≤ n) each — the indices of the left and the right ends of the corresponding subarray.

Output

Output t lines, the i-th line of the output should contain single positive integer — the power of the i-th query subarray.

Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preferred to use cout stream (also you may use%I64d).

Examples
input
3 2
1 2 1
1 2
1 3
output
3
6
input
8 3
1 1 2 2 1 3 1 1
2 7
1 6
2 7
output
20
20
20
Note

Consider the following array (see the second sample) and its [2, 7] subarray (elements of the subarray are colored):

Then K1 = 3, K2 = 2, K3 = 1, so the power is equal to 32·1 + 22·2 + 12·3 = 20.

AC代码:
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+;
int n,t;
long long a[N],num[N],ans[N];
struct node
{
/* friend bool operator< ()
{ }*/
int l,r,id,pos;
};
node qu[N];
int cmp(node x,node y)
{
if(x.pos==y.pos)return x.r<y.r;
return x.l<y.l;
}
void solve()
{
long long temp=;
int le=,ri=;
for(int i=;i<=t;i++)
{
while(ri<qu[i].r)
{
ri++;
temp+=((num[a[ri]]<<)+)*a[ri];
num[a[ri]]++;
}
while(ri>qu[i].r)
{
num[a[ri]]--;
temp-=((num[a[ri]]<<)+)*a[ri];
ri--;
}
while(le<qu[i].l)
{
num[a[le]]--;
temp-=((num[a[le]]<<)+)*a[le];
le++;
}
while(le>qu[i].l)
{
le--;
temp+=((num[a[le]]<<)+)*a[le];
num[a[le]]++;
}
ans[qu[i].id]=temp;
}
} int main()
{
scanf("%d%d",&n,&t);
for(int i=;i<=n;i++)
{
scanf("%I64d",&a[i]);
}
int sq=sqrt(n);
for(int i=;i<=t;i++)
{
scanf("%d%d",&qu[i].l,&qu[i].r);
qu[i].id=i;
qu[i].pos=qu[i].l/sq;
}
sort(qu+,qu+t+,cmp);
solve();
for(int i=;i<=t;i++)
{
printf("%I64d\n",ans[i]);
}
return ;
}

codeforces 86D D. Powerful array(莫队算法)的更多相关文章

  1. CodeForces - 86D D. Powerful array —— 莫队算法

    题目链接:http://codeforces.com/problemset/problem/86/D D. Powerful array time limit per test 5 seconds m ...

  2. codeforces 86D,Powerful array 莫队

    传送门:https://codeforces.com/contest/86/problem/D 题意: 给你n个数,m次询问,每次询问问你在区间l,r内每个数字出现的次数的平方于当前这个数的乘积的和 ...

  3. D. Powerful array 莫队算法或者说块状数组 其实都是有点优化的暴力

    莫队算法就是优化的暴力算法.莫队算法是要把询问先按左端点属于的块排序,再按右端点排序.只是预先知道了所有的询问.可以合理的组织计算每个询问的顺序以此来降低复杂度. D. Powerful array ...

  4. [Codeforces86D]Powerful array(莫队算法)

    题意:定义K[x]为元素x在区间[l,r]内出现的次数,那么它的贡献为K[x]*K[x]*x 给定一个序列,以及一些区间询问,求每个区间的贡献 算是莫队算法膜版题,不带修改的 Code #includ ...

  5. Codeforces 86D - Powerful array(莫队算法)

    题目链接:http://codeforces.com/problemset/problem/86/D 题目大意:给定一个数组,每次询问一个区间[l,r],设cnt[i]为数字i在该区间内的出现次数,求 ...

  6. CodeForces 86 D Powerful array 莫队

    Powerful array 题意:求区间[l, r] 内的数的出现次数的平方 * 该数字. 题解:莫队离线操作, 然后加减位置的时候直接修改答案就好了. 这个题目中发现了一个很神奇的事情,本来数组开 ...

  7. codeforces 86D D. Powerful array

    An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary subarray al, a ...

  8. CodeForces - 86D Powerful array (莫队)

    题意:查询的是区间内每个数出现次数的平方×该数值的和. 分析:虽然是道莫队裸体,但是姿势不对就会超时.答案可能爆int,所以要开long long 存答案.一开始的维护操作,我先在res里减掉了a[p ...

  9. Yandex.Algorithm 2011 Round 2 D. Powerful array 莫队

    题目链接:点击传送 D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input ...

随机推荐

  1. win10中如何成功安装lxml

    lxml官网地址:http://lxml.de/index.html 问题: 在学习lxm的时候,发现在win10下总是安装失败,如下: 在网上搜索了半天也没找到具体的解决方案,就FQgoogle下, ...

  2. app 之间发送文件 ios

    本文转载至 http://www.51094.com/?p=212   第一种: 发送一个正常的  pdf 文件,只要是能读取pdf 的都能得到响应 -(IBAction)openDocumentIn ...

  3. PDP开发环境搭建

    1. 安装git 2.创建SSH-rsa钥匙 3. 写入 gitlab 4. 克隆分支 git clone  -b  dev_pdp_minz_ep_metting   git@gitlab.csvw ...

  4. django form 表单验证

  5. c/c++一些小知识点(特此总结)

    ---恢复内容开始--- ---恢复内容结束---

  6. 【CodeM初赛B轮】F 期望DP

    [CodeM初赛B轮]F 题目大意:有n个景点,m条无向边,经过每条边的时间需要的时间是li,在第i个景点游览花费的时间是ti,游览完第i个景点可以获得的满意度是hi.你的总时间为k,起初你等概率的选 ...

  7. EF中几个重要的类:ObjectContext、ObjectQuery、ObjectStateEntry、ObjectStateManager

    ObjectContext封装 .NET Framework 和数据库之间的连接.此类用作“创建”.“读取”.“更新”和“删除”操作的网关. ObjectContext 类为主类,用于与作为对象(这些 ...

  8. 九度OJ 1350:二叉树的深度 (二叉树)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1044 解决:614 题目描述: 输入一棵二叉树,求该树的深度.从根结点到叶结点依次经过的结点(含根.叶结点)形成树的一条路径,最长路径的长 ...

  9. output value . Sigmoid neurons are similar to perceptrons, but modified so that small changes in their weights and bias cause only a small change in their output.

    http://neuralnetworksanddeeplearning.com/chap1.html . Sigmoid neurons are similar to perceptrons, bu ...

  10. 加密php源代码

    <?php function RandAbc($length = "") { //返回随机字符串 $str = "ABCDEFGHIJKLMNOPQRSTUVWXY ...