Hadoop InputFormat详解
InputFormat是MapReduce编程模型包括5个可编程组件之一,其余4个是Mapper、Partitioner、Reducer和OutputFormat。
新版Hadoop InputFormat是一个抽象类,之前的InputFormat是一个接口。
InputFormat类有两个抽象方法。
方法getSplits将输入数据切分成InputSlits,InputSplits的个数即为map tasks的个数,InputSplits的大小默认为块大小,即64M
public abstract List<InputSplit> getSplits(JobContext context) throws IOException, InterruptedException;
方法createRecordReader将每个InputSplit解析成RecordReader, 再依次将RecordReader解析成<K,V>对
public abstract RecordReader<K,V> createRecordReader(InputSplit split,TaskAttemptContext context) throws IOException,InterruptedException;
也就是说InputFormat完成以下工作:
自己实现的一个RecordReader
package tokenize.inputformat; import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.CombineFileSplit; public class MyRecordReader extends RecordReader<Text, Text> { private CombineFileSplit combineFileSplit; // 当前处理的分片
private int totalLength; // 分片包含的文件数量
private int currentIndex; // 当前处理的文件索引
private float currentProgress = 0; // 当前的进度
private Text currentKey = new Text(); // 当前的Key
private Text currentValue = new Text(); // 当前的Value
private Configuration conf; // 任务信息
private boolean processed; // 记录当前文件是否已经读取 public MyRecordReader(CombineFileSplit combineFileSplit,
TaskAttemptContext context, Integer index) throws IOException {
super();
this.currentIndex = index;
this.combineFileSplit = combineFileSplit;
conf = context.getConfiguration();
totalLength = combineFileSplit.getPaths().length;
processed = false;
} @Override
public void initialize(InputSplit split, TaskAttemptContext context)
throws IOException, InterruptedException {
} @Override
public Text getCurrentKey() throws IOException, InterruptedException {
return currentKey;
} @Override
public Text getCurrentValue() throws IOException, InterruptedException {
return currentValue;
} @Override
public float getProgress() throws IOException {
if (currentIndex >= 0 && currentIndex < totalLength) {
currentProgress = (float) currentIndex / totalLength;
return currentProgress;
}
return currentProgress;
} @Override
public void close() throws IOException {
} @Override
public boolean nextKeyValue() throws IOException {
if (!processed) { // 如果文件未处理则读取文件并设置key-value
// set key
Path file = combineFileSplit.getPath(currentIndex);
currentKey.set(file.getParent().getName()); // category's name
// set value
FSDataInputStream in = null;
byte[] contents = new byte[(int)combineFileSplit.getLength(currentIndex)];
try {
FileSystem fs = file.getFileSystem(conf);
in = fs.open(file);
in.readFully(contents);
currentValue.set(contents);
} catch (Exception e) {
} finally {
in.close();
}
processed = true;
return true;
}
return false; //如果文件已经处理,必须返回false
} }
package tokenize.inputformat; import java.io.IOException; import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.CombineFileRecordReader;
import org.apache.hadoop.mapreduce.lib.input.CombineFileSplit; public class MyInputFormat extends CombineFileInputFormat<Text, Text> {
/**
* make sure file will not be splitted
*/
@Override
protected boolean isSplitable(JobContext context, Path file) {
return false;
} /**
* specify record reader
*/
@Override
public RecordReader<Text, Text> createRecordReader(InputSplit split, TaskAttemptContext context) throws IOException {
CombineFileRecordReader<Text, Text> recordReader = new CombineFileRecordReader<Text, Text>(
(CombineFileSplit)split, context, MyRecordReader.class);
return recordReader;
} }
Hadoop InputFormat详解的更多相关文章
- Hadoop Streaming详解
一: Hadoop Streaming详解 1.Streaming的作用 Hadoop Streaming框架,最大的好处是,让任何语言编写的map, reduce程序能够在hadoop集群上运行:m ...
- Python API 操作Hadoop hdfs详解
1:安装 由于是windows环境(linux其实也一样),只要有pip或者setup_install安装起来都是很方便的 >pip install hdfs 2:Client——创建集群连接 ...
- Hadoop Pipeline详解[摘抄]
最近使用公司内部的一个框架写map reduce发现没有封装hadoop streaming这些东西,查了下pipeline相关的东西 Hadoop Pipeline详解 20. Aug / had ...
- hadoop框架详解
Hadoop框架详解 Hadoop项目主要包括以下四个模块 ◆ Hadoop Common: 为其他Hadoop模块提供基础设施 ◆ Hadoop HDFS: 一个高可靠.高吞吐量的分布式文件系统 ◆ ...
- Hadoop基本命令详解
调用文件系统(FS)Shell命令应使用bin/hadoop fs <args>的形式.所有的的FS shell命令使用URI路径作为参数.URI路径详解点击这里. 1.cat 说明:将路 ...
- hadoop shell 详解
概述 所有的hadoop命令均由bin/hadoop脚本引发.不指定参数运行hadoop脚本会打印所有命令的描述. 用法: hadoop [--config confdir] [COMMAND] ...
- Hadoop实战之二~ hadoop作业调度详解(1)
对Hadoop的最感兴趣的地方,也就在于Hadoop的作业调度了,在正式介绍如何搭建Hadoop之前,深入理解一下Hadoop的作业调度很有必要.我们不一定能用得上Hadoop,但是如果理通顺Hado ...
- mapreduce: InputFormat详解 -- RecordReader篇
InputFormat是MapReduce中一个很常用的概念,它在程序的运行中到底起到了什么作用呢? InputFormat其实是一个接口,包含了两个方法: public interface Inpu ...
- Hadoop配置文件详解
1 获取默认配置 配置hadoop,主要是配置core-site.xml,hdfs-site.xml,mapred-site.xml三个配置文件,默认下来,这些配置文件都是空的,所以很难知 ...
随机推荐
- 问题6:如何让字典保持有序(使用collections的OrderedDict方法)
from collections imort OrderedDict d = OrderedDict() d['aa'] = (1, 30) d['bb'] = (2, 31) d['cc'] = ( ...
- Linker Tools Error LNK2001
https://msdn.microsoft.com/en-us/library/f6xx1b1z.aspx https://www.cnblogs.com/runningRain/p/5674833 ...
- stm32之外设控制
本文将提到以下内容: 蜂鸣器 按键控制 电容触摸 温度传感器 红外 TFTLCD触摸屏 MPU6050传感器 SPI-FLASH SDIO_SD卡 ucos-III移植 一.蜂鸣器 蜂鸣器是一种一体化 ...
- 拖动调整div布局大小
一.需求 实现类似windows软件的那种,拖动调整两个div的大小 二.结果示例: 三.示例代码: https://github.com/CinYung/jQuery.divResizer.git
- C语言学习笔记--const 和 volatile关键字
1.const关键字 (1)const 修饰的变量是只读的,它不是真正的常量,本质还是变量,只是告诉编译器不能出现在赋值号左边! (2)const 修饰的局部变量在栈上分配空间 (3)const 修饰 ...
- web安全之同源策略
为什么使用同源策略?一个重要原因就是对cookie的保护,cookie 中存着sessionID .如果已经登录网站,同时又去了任意其他网站,该网站有恶意JS代码.如果没有同源策略,那么这个网站就能通 ...
- <table>的使用以及确定取消按钮的设置
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Python最小二乘法解非线性超定方程组
求解非线性超定方程组,网上搜到的大多是线性方程组的最小二乘解法,对于非线性方程组无济于事. 这里分享一种方法:SciPy库的scipy.optimize.leastsq函数. import numpy ...
- hdu1080
#include<iostream> using namespace std; char s1[105],s2[105]; int val[5][5]={ {5,-1,-2,-1,-3}, ...
- 连接mysql时报:message from server: "Host '192.168.76.89' is not allowed to connect to this MySQL server 处理方案
1.先用localhost方式连接到MySQL数据库,然后使用MySQL自带的数据库mysql; use mysql: 2.执行:select host from user where user = ...