UVA - 10870 Recurrences 【矩阵快速幂】
题目链接
https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553
题意
给出一个表达式 算法 f(n)
思路
n 很大 自然想到是 矩阵快速幂
那么问题就是 怎么构造矩阵
我们想到的一种构造方法是
n = 2 时
n = 3 时
然后大概就能够发现规律了吧 。。
AC代码
#include <cstdio>
#include <cstring>
#include <ctype.h>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <map>
#include <stack>
#include <set>
#include <list>
#include <numeric>
#include <sstream>
#include <iomanip>
#include <limits>
#define CLR(a, b) memset(a, (b), sizeof(a))
#define pb push_back
#define bug puts("***bug***");
#define fi first
#define se second
#define stack_expand #pragma comment(linker, "/STACK:102400000,102400000")
#define syn_close ios::sync_with_stdio(false);cin.tie(0);
#define sp system("pause");
//#define bug
//#define gets gets_s
using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
typedef pair <string, int> psi;
typedef pair <string, string> pss;
typedef pair <double, int> pdi;
const double PI = acos(-1.0);
const double E = exp(1.0);
const double eps = 1e-8;
const int INF = 0x3f3f3f3f;
const int maxn = 1e2 + 10;
const int MOD = 142857;
int d, n, m;
ll a[20], b[20];
struct Matrix
{
ll a[20][20];
Matrix() {}
Matrix operator * (Matrix const &b)const
{
Matrix res;
CLR(res.a, 0);
for (int i = 0; i < d; i++)
for (int j = 0; j < d; j++)
for (int k = 0; k < d; k++)
res.a[i][j] = (res.a[i][j] + this->a[i][k] * b.a[k][j]) % m;
return res;
}
};
Matrix pow_mod(Matrix ans, int n)
{
Matrix base;
CLR(base.a, 0);
for (int i = 0; i < d; ++i)
{
base.a[i][0] = a[i];
}
for (int i = 0; i < d; ++i)
{
base.a[i][i + 1] = 1;
}
while (n > 0)
{
if (n & 1)
ans = ans * base;
base = base * base;
n >>= 1;
}
return ans;
}
int main()
{
while (scanf("%d %d %d", &d, &n, &m) && (d || n || m))
{
for (int i = 0; i < d; i++)
scanf("%lld", &a[i]);
for (int i = 0; i < d; i++)
scanf("%lld", &b[i]);
if (n <= d)
{
printf("%lld\n", b[n - 1] % m);
continue;
}
Matrix ans;
for (int i = 0; i < d; i++)
for (int j = 0; j < d; j++)
ans.a[i][j] = b[d - j - 1];
ans = pow_mod(ans, n - d);
printf("%lld\n", ans.a[0][0]);
}
return 0;
}
UVA - 10870 Recurrences 【矩阵快速幂】的更多相关文章
- UVa 10870 Recurrences (矩阵快速幂)
题意:给定 d , n , m (1<=d<=15,1<=n<=2^31-1,1<=m<=46340).a1 , a2 ..... ad.f(1), f(2) .. ...
- uva 10870 递推关系矩阵快速幂模
Recurrences Input: standard input Output: standard output Consider recurrent functions of the follow ...
- UVA 10870 - Recurrences(矩阵高速功率)
UVA 10870 - Recurrences 题目链接 题意:f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), ...
- UVA10870 Recurrences —— 矩阵快速幂
题目链接:https://vjudge.net/problem/UVA-10870 题意: 典型的矩阵快速幂的运用.比一般的斐波那契数推导式多了几项而已. 代码如下: #include <bit ...
- POJ-3070Fibonacci(矩阵快速幂求Fibonacci数列) uva 10689 Yet another Number Sequence【矩阵快速幂】
典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a) ...
- uva 10518 - How Many Calls?(矩阵快速幂)
题目链接:uva 10518 - How Many Calls? 公式f(n) = 2 * F(n) - 1, F(n)用矩阵快速幂求. #include <stdio.h> #inclu ...
- Tribonacci UVA - 12470 (简单的斐波拉契数列)(矩阵快速幂)
题意:a1=0;a2=1;a3=2; a(n)=a(n-1)+a(n-2)+a(n-3); 求a(n) 思路:矩阵快速幂 #include<cstdio> #include<cst ...
- UVA - 11149 (矩阵快速幂+倍增法)
第一道矩阵快速幂的题:模板题: #include<stack> #include<queue> #include<cmath> #include<cstdio ...
- UVA10870—Recurrences(简单矩阵快速幂)
题目链接:https://vjudge.net/problem/UVA-10870 题目意思: 给出a1,a2,a3,a4,a5………………ad,然后算下面这个递推式子,简单的矩阵快速幂,裸题,但是第 ...
随机推荐
- SDUTOJ 2804求二叉树的深度
#include<iostream> #include<stdlib.h> #include<string.h> using namespace std; char ...
- jenkins调用shell脚本 输出带颜色字体
jenkins需要安装AnsiColor插件在构建环境项选择“color ansi console output” 安装插件AnsiColor shell 脚本相关颜色设置 echo -e " ...
- Tomcat Https配置
一.生成KeyStore 打开命令行,输入:keytool -genkey -alias tomcat_server -keyalg RSA -storepass jimmypwd -validity ...
- IIS5.1、IIS6.0、IIS7.5中安装配置MVC 3
本文主要介绍在IIS5.1.IIS6.0.IIS7.5中安装配置MVC 3的具体办法! 正文: IIS5.1 1. 安装Microsoft .net FrameWork 4.0安装包; 2. 安装AS ...
- MongoDB 的聚集操作
聚合引言 聚集操作就是出来数据记录并返回计算结果的操作.MongoDB提供了丰富的聚集操作.可以检測和执行数据集上的计算.执行在mongod上的数据聚集简化了代码和资源限制. 像查询一样,在Mongo ...
- CentOS yum 命令出现 [Errno 14] curl#6 - "Couldn't resolve host ..." 的解决方法
安装svn的时候,发现报错说一个地址无法訪问. # yum list | grep subversion http://opensource.wandisco.com/centos/7/svn-1.8 ...
- 玩转JPA(一)---异常:Repeated column in mapping for entity/should be mapped with insert="false" update="fal
近期用JPA遇到这样一个问题:Repeated column in mapping for entity: com.ketayao.security.entity.main.User column: ...
- ubuntu安装中文man手册
1.安装manpages-zh包 sudo apt-get install manpages-zh 2.修改manpath文件 执行如下命令: vi /etc/manpath.config %s+/u ...
- 为什么要用markdown写作
无论是 EPUB, mobi,还是 Kindle 用的专有格式 .azw,都只是把一堆 `HTML 文件打包`而已.如果你写的是书,用 Markdown 标注格式之后,可以很方便地转为以上格式 使用W ...
- Dijkstra 算法——计算有权最短路径(边有权值)
[0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在理解 Dijkstra 的思想并用源代码加以实现: 0.2)最短路径算法的基础知识,参见 http://blog. ...