[CQOI2018]异或序列 (莫队,异或前缀和)
题目链接
Solution
有点巧的莫队.
考虑到区间 \([L,R]\) 的异或和也即 \(sum[L-1]~\bigoplus~sum[R]\) ,此处\(sum\)即为异或前缀和.
然后如何考虑异或和为 \(k\) ?
我们做完前缀和后,可以发现对于\(sum[i]\)这个起点,异或上\(k\bigoplus{sum[i]}\)则可以异或成\(k\).
且由于 \(k\leq{100000}\) ,所以可以开一个数组记录每一个异或值的出现次数.
然后就可以 \(O(1)\) 修改了,套个莫队即可.
Code
#include<bits/stdc++.h>
#define N 100001
#define in(x) x=read()
#define del(x) js[a[x]]--;ans-=js[a[x]^k];
#define add(x) ans+=js[a[x]^k];js[a[x]]++;
using namespace std;
struct sj{int l,r,id;}q[N];
int js[N],pos[N],Ans[N],a[N],n,m,k;
int L,R,ans,sz;
int read()
{
char ch=getchar();int f=1,w=0;
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){w=w*10+ch-'0';ch=getchar();}
return f*w;
}
bool cmp(sj x,sj y)
{
if(pos[x.l]==pos[y.l])return pos[x.r]<pos[y.r];
return pos[x.l]<pos[y.l];
}
int main()
{
in(n),in(m),in(k); sz=sqrt(n);
for(int i=1;i<=n;i++)
{int x; in(x); a[i]=a[i-1]^x;pos[i]=i/*/sz*/;}
for(int i=1;i<=m;i++)
in(q[i].l),in(q[i].r),q[i].id=i;
sort(q+1,q+m+1,cmp);
js[0]=1; ans=0; L=1;
for(int i=1;i<=m;i++)
{
while(L>q[i].l){L--;add(L-1);}
while(L<q[i].l){del(L-1);L++;}
while(R<q[i].r){R++;add(R);}
while(R>q[i].r){del(R);R--;}
Ans[q[i].id]=ans;
}
for(int i=1;i<=m;i++)
cout<<Ans[i]<<endl;
}
[CQOI2018]异或序列 (莫队,异或前缀和)的更多相关文章
- BZOJ5301:[CQOI2018]异或序列(莫队)
Description 已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所 ...
- bzoj 5301 [Cqoi2018]异或序列 莫队
5301: [Cqoi2018]异或序列 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 204 Solved: 155[Submit][Status ...
- bzoj 5301: [Cqoi2018]异或序列 (莫队算法)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...
- 洛谷P4462 [CQOI2018]异或序列(莫队)
题意 题目链接 Sol 一开始以为K每次都是给出的想了半天不会做. 然而发现读错题了维护个前缀异或和然后直接莫队搞就行,. #include<bits/stdc++.h> #define ...
- P4462 [CQOI2018]异或序列 莫队
题意:给定数列 \(a\) 和 \(k\) ,询问区间 \([l,r]\) 中有多少子区间满足异或和为 \(k\). 莫队.我们可以记录前缀异或值 \(a_i\),修改时,贡献为 \(c[a_i\bi ...
- 【CQOI2018】异或序列 - 莫队
题目描述 已知一个长度为n的整数数列 $a_1,a_2,...,a_n$,给定查询参数l.r,问在 $a_l,a_{l+1},...,a_r$ 区间内,有多少子序列满足异或和等于k.也就是说,对于 ...
- CQOI2018异或序列 [莫队]
莫队板子 用于复习 #include <cstdio> #include <cstdlib> #include <algorithm> #include <c ...
- luogu P4462 [CQOI2018]异或序列 |莫队
题目描述 已知一个长度为n的整数数列a1,a2,...,an,给定查询参数l.r,问在al,al+1,...,ar区间内,有多少子序列满足异或和等于k.也就是说,对于所有的x,y (I ≤ x ≤ ...
- 学习笔记——不带修序列莫队 (luogu2079)小B的询问
莫队是一种对于询问的离线算法 时间复杂度:O(\(n \sqrt n\)) 大致思想就是 首先将询问离线,然后对原序列分块,使得每一个\(l和r\)都在一个块里 然后按照左节点排序,若所在的块相等,就 ...
随机推荐
- python--随笔一
1.format函数--根据关键字和位置选择性插入数据 In [11]: '{mingzi}jintian{dongzuo}'.format(mingzi='duzi',dongzuo='i love ...
- 嵌入式Linux编译内核步骤 / 重点解决机器码问题 / 三星2451
嵌入式系统更新内核 1. 前言 手里有一块Friendly ARM的MINI2451的板子,这周试着编译内核,然后更新一下这个板子的Linux内核,想要更新Linux Kernel 4.1版本,但是种 ...
- Django自带后台管理配置
Django自带后台管理的配置 创建项目和应用 修改配置文件 数据库配置 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql' ...
- python学习之变量类型
变量: 变量是保存在内存中的值,根据变量类型开辟不同的内存空间且只允许符合该数据类型的数据才可以被存储在该内存空间中 变量赋值: 在Python中定义变量时,无需像其他语言一样需要声明数据类型.每个变 ...
- Linux基础知识与命令1(su passwd)
一.Linux的基本原则 1.linux由一个个目的单一的小程序组成,我们一般需要组合小程序来完成复杂的任务 2.Linux的一切都是文件(文件类似于一棵树,包括外设,接口) 3.Linux尽量避免捕 ...
- E - Nature Reserve CodeForces - 1059D
传送门 There is a forest that we model as a plane and live nn rare animals. Animal number iihas its lai ...
- debug注意事项
1 先看关键代码是否正确,然后查一遍是否有变量名打错. 2 再看初始化有没有问题 3 再把范围开大和开int64(这应该刚开始看题就要注意,在不爆内存的情况下开int64) 4 静态调试,输出中间值. ...
- K-均值聚类——电影类型
K-均值聚类 K-均值算法试图将一系列样本分割成K个不同的类簇(其中K是模型的输入参数),其形式化的目标函数称为类簇内的方差和(within cluster sum of squared errors ...
- Spring---配置文件概述
概述 Spring 的配置文件是用于指导 Spring 工厂进行Bean的生产.依赖关系注入及 Bean 实例分发的“图纸”,它是一个或多个标准的XML文档,J2EE 程序员必须学会并灵活应用这份“图 ...
- Django 博客开发教程目录索引
Django 博客开发教程目录索引 本项目适合 0 基础的 Django 开发新人. 项目演示地址:Black & White,代码 GitHub 仓库地址:zmrenwu/django-bl ...