Discription

You are given three integers kpa and pb.

You will construct a sequence with the following algorithm: Initially, start with the empty sequence. Each second, you do the following. With probability pa / (pa + pb), add 'a' to the end of the sequence. Otherwise (with probability pb / (pa + pb)), add 'b' to the end of the sequence.

You stop once there are at least k subsequences that form 'ab'. Determine the expected number of times 'ab' is a subsequence in the resulting sequence. It can be shown that this can be represented by P / Q, where P and Q are coprime integers, and . Print the value of .

Input

The first line will contain three integers integer k, pa, pb (1 ≤ k ≤ 1 000, 1 ≤ pa, pb ≤ 1 000 000).

Output

Print a single integer, the answer to the problem.

Example

Input
1 1 1
Output
2
Input
3 1 4
Output
370000006

Note

The first sample, we will keep appending to our sequence until we get the subsequence 'ab' at least once. For instance, we get the sequence 'ab' with probability 1/4, 'bbab' with probability 1/16, and 'aab' with probability 1/8. Note, it's impossible for us to end with a sequence like 'aabab', since we would have stopped our algorithm once we had the prefix 'aab'.

The expected amount of times that 'ab' will occur across all valid sequences is 2.

For the second sample, the answer is equal to .

设f[i][j]为有i对ab,并且已经有j个a的期望,转移很好写,f[i][j]= (pa/(pa+pb))*f[i][j+1] + (pb/(pa+pb))*f[i+j][j] 、

但是可以发现的是如果要计算所有状态的话j显然可以无限大,,,比如全是a的序列。。。。

但是还可以发现,当i+j>=k的时候,(pb/(pa+pb))*f[i+j][j] 其实就等于 (pb/(pa+pb))*(i+j)。

这样我们等比数列错位相减一下(需要化简一大堆式子,在这就懒得写了),可以得到一个边界:f[i][j]=i+j +pa/pb    (i+j>=n)

然后f[i][0]=f[i][1],这个带第一个转移的式子就可以得到。。。。。

/*
设f[i][j]为有i对ab,目前已经有了j个a的ab期望个数
1.f[i][j]= pa/pb + i+j ,其中i+j>=n (这个推个式子然后生成函数一下就OJBK了)
2.f[i][0]=f[i][1] (这个也是代换一下就好了)
3.其他情况下,f[i][j]= (pa/(pa+pb))*f[i][j+1] + (pb/(pa+pb))*f[i+j][j]
*/
#include<bits/stdc++.h>
#define ll long long
const int ha=1000000007;
const int maxn=1005;
int inv[2000005];
int n,pa,pb;
int f[2005][1005]; inline void init(){
inv[1]=1;
for(int i=2;i<=2000000;i++) inv[i]=-inv[ha%i]*(ll)(ha/i)%ha+ha;
} inline int add(int x,int y){
x+=y;
if(x>=ha) return x-ha;
else return x;
} inline void dp(){
int base=(pa*(ll)inv[pb]+(ll)n)%ha;
int PA=pa*(ll)inv[pa+pb]%ha,PB=pb*(ll)inv[pa+pb]%ha;
for(int i=n-1;i>=0;i--){
for(int j=n-i;j<=n;j++) f[i][j]=add(base,j-n+i);
for(int j=n-i-1;j;j--) f[i][j]=add(f[i][j+1]*(ll)PA%ha,f[i+j][j]*(ll)PB%ha);
f[i][0]=f[i][1];
}
} int main(){
init();
scanf("%d%d%d",&n,&pa,&pb);
dp();
printf("%d\n",f[0][0]);
return 0;
}

  

Codeforces 908 D New Year and Arbitrary Arrangement的更多相关文章

  1. Codeforces 908 D.New Year and Arbitrary Arrangement (概率&期望DP)

    题目链接:New Year and Arbitrary Arrangement 题意: 有一个ab字符串,初始为空. 用Pa/(Pa+Pb)的概率在末尾添加字母a,有 Pb/(Pa+Pb)的概率在末尾 ...

  2. 【CodeForces】908 D. New Year and Arbitrary Arrangement

    [题目]Good Bye 2017 D. New Year and Arbitrary Arrangement [题意]给定正整数k,pa,pb,初始有空字符串,每次有pa/(pa+pb)的可能在字符 ...

  3. CF 908 D New Year and Arbitrary Arrangement —— 期望DP

    题目:http://codeforces.com/contest/908/problem/D 首先,设 f[i][j] 表示有 i 个 a,j 个 ab 组合的期望,A = pa / (pa + pb ...

  4. [CodeForces]908D New Year and Arbitrary Arrangement

    设状态f[i][j]表示有i个a,j个ab的期望 发现如果i+j>=k的话就再来一个b就行了. #include <iostream> #include <cstdio> ...

  5. Codeforces New Year and Arbitrary Arrangement

    New Year and Arbitrary Arrangement time limit per test2 seconds You are given three integers k, pa a ...

  6. Codeforces 908D New Year and Arbitrary Arrangement(概率DP,边界条件处理)

    题目链接  Goodbye 2017 Problem D 题意  一个字符串开始,每次有$\frac{pa}{pa+pb}$的概率在后面加一个a,$\frac{pb}{pa+pb}$的概率在后面加一个 ...

  7. CF 908D New Year and Arbitrary Arrangement——期望dp

    题目:http://codeforces.com/contest/908/problem/D 注意是子序列.加一个a对ab个数无影响:加一个b使ab个数多出它前面的a那么多个.所以状态里记录有多少个a ...

  8. Good Bye 2017 D. New Year and Arbitrary Arrangement

    看了别人的题解 首先这题是一个dp dp[i][j] i是当前有多少个a j是当前有多少个ab子序列 dp[i][j] = dp[i+1][j]*Pa + dp[i][i+j]*Pb; i,j 时加一 ...

  9. CF908D Arbitrary Arrangement

    题目大意: 给定三个数\(k\) , \(p_a\) , \(p_b\) 每次有\(\frac{p_a}{p_a+p_b}\)的概率往后面添加一个'a' 每次有\(\frac{p_b}{p_a+p_b ...

随机推荐

  1. linux备忘录-vi和vim

    知识点 vi的三种模式 一般模式 按 ESC 可回到一般模式 相关按键 j 代表 向下按钮 k 代表 向上按钮 h 代表 向左按钮 l 代表 向右按钮 20j 等代表 向下移动20行 Ctrl + f ...

  2. 团队项目-第六次Scrum 会议

    时间:11.1 时长:30分钟 地点:F楼2层沙发休息处 工作情况 团队成员 已完成任务 待完成任务 解小锐 完成员工信息的简单初始化 学习cocos creator样例 陈鑫 完成CurrentPr ...

  3. c++ 2.1 编译器何时创建默认构造函数

    我们通常会说当生命一个 class 时,如果我们不为该 class 指定一个 constructor,那么编译器会替我们实现一个 connstructor,那么这种说法一定对吗? 事实上,这是不对的. ...

  4. vue cli & npm err & shit cnpm

    vue cli & npm err & shit cnpm npm err & shit cnpm https://github.com/vuejs/vue-cli/issue ...

  5. [SQL Server]关于标识列,标识从1开始计数的的方法

    DBCC CHECKIDENT ('表名',  RESEED, 0) //从30开始 DBCC  CHECKIDENT  (jobs,  RESEED,  30)

  6. MPLAB® XC C编译器的Workstation License的获取及安装方法

    MPLAB®XC C编译器的Workstation License获取及安装方法如下:首先需要购买获得一个XC C编译器的激活码,然后到以下网页(http://www.microchip.com/rl ...

  7. POJ 2115 C-Looooops | exgcd

    题目 给出一个循环for(int i=A;i!=B;i+=C) 在mod (1<<k) 下是否可以退出循环 是,输出时间,否输出FORVEER 题解: 题意可以变换成 A+Cx=B (mo ...

  8. HDU 5761 物理题

    Rower Bo Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  9. angularjs的service

    1.首先我们创建一个模块 var module = angular.module( "my.new.module", [] ); 2.然后写具体的service 可以看到它是一个很 ...

  10. makefile语法

    makefile很重要 什么是makefile? 或许很多Winodws的程序员都不知道这个东西,因为那些Windows的IDE都为你做了这个工作,但我觉得要作一个好的和professional 的程 ...