Nginx之红黑树
/*
* Copyright (C) Igor Sysoev
* Copyright (C) Nginx, Inc.
*/
#ifndef _NGX_RBTREE_H_INCLUDED_
#define _NGX_RBTREE_H_INCLUDED_
#include <ngx_config.h>
#include <ngx_core.h>
typedef ngx_uint_t ngx_rbtree_key_t;
typedef ngx_int_t ngx_rbtree_key_int_t;
typedef struct ngx_rbtree_node_s ngx_rbtree_node_t;
// 红黑树
struct ngx_rbtree_node_s {
// 无符号整形的keyword
ngx_rbtree_key_t key;
// 左子节点
ngx_rbtree_node_t *left;
// 右子节点
ngx_rbtree_node_t *right;
// 父节点
ngx_rbtree_node_t *parent;
// 节点的颜色,0表示黑色。1表示红色
u_char color;
// 仅1个字节的节点数据。
因为表示的空间太小,所以一般非常少使用。
u_char data;
};
typedef struct ngx_rbtree_s ngx_rbtree_t;
typedef void (*ngx_rbtree_insert_pt) (ngx_rbtree_node_t *root,
ngx_rbtree_node_t *node, ngx_rbtree_node_t *sentinel);
struct ngx_rbtree_s {
// 指向树的根节点。
ngx_rbtree_node_t *root;
// 指向NIL哨兵节点
ngx_rbtree_node_t *sentinel;
// 表示红黑树加入元素的函数指针,它决定在加入新节点时的行为到底是替换还是新增
ngx_rbtree_insert_pt insert;
};
#define ngx_rbtree_init(tree, s, i) \
ngx_rbtree_sentinel_init(s); \
(tree)->root = s; \
(tree)->sentinel = s; \
(tree)->insert = i
void ngx_rbtree_insert(ngx_thread_volatile ngx_rbtree_t *tree,
ngx_rbtree_node_t *node);
void ngx_rbtree_delete(ngx_thread_volatile ngx_rbtree_t *tree,
ngx_rbtree_node_t *node);
void ngx_rbtree_insert_value(ngx_rbtree_node_t *root, ngx_rbtree_node_t *node,
ngx_rbtree_node_t *sentinel);
void ngx_rbtree_insert_timer_value(ngx_rbtree_node_t *root,
ngx_rbtree_node_t *node, ngx_rbtree_node_t *sentinel);
#define ngx_rbt_red(node) ((node)->color = 1)
#define ngx_rbt_black(node) ((node)->color = 0)
#define ngx_rbt_is_red(node) ((node)->color)
#define ngx_rbt_is_black(node) (!ngx_rbt_is_red(node))
#define ngx_rbt_copy_color(n1, n2) (n1->color = n2->color)
/* a sentinel must be black */
#define ngx_rbtree_sentinel_init(node) ngx_rbt_black(node)
static ngx_inline ngx_rbtree_node_t *
ngx_rbtree_min(ngx_rbtree_node_t *node, ngx_rbtree_node_t *sentinel)
{
while (node->left != sentinel) {
node = node->left;
}
return node;
}
#endif /* _NGX_RBTREE_H_INCLUDED_ */
/*
* Copyright (C) Igor Sysoev
* Copyright (C) Nginx, Inc.
*/
#include <ngx_config.h>
#include <ngx_core.h>
/*
* The red-black tree code is based on the algorithm described in
* the "Introduction to Algorithms" by Cormen, Leiserson and Rivest.
*/
static ngx_inline void ngx_rbtree_left_rotate(ngx_rbtree_node_t **root,
ngx_rbtree_node_t *sentinel, ngx_rbtree_node_t *node);
static ngx_inline void ngx_rbtree_right_rotate(ngx_rbtree_node_t **root,
ngx_rbtree_node_t *sentinel, ngx_rbtree_node_t *node);
void ngx_rbtree_insert(ngx_thread_volatile ngx_rbtree_t *tree,
ngx_rbtree_node_t *node) {
ngx_rbtree_node_t **root, *temp, *sentinel;
/* a binary tree insert */
root = (ngx_rbtree_node_t **) &tree->root;
sentinel = tree->sentinel;
if (*root == sentinel) { //空树
node->parent = NULL;
node->left = sentinel;
node->right = sentinel;
ngx_rbt_black(node);
*root = node;
return;
}
tree->insert(*root, node, sentinel);
/* re-balance tree */
while (node != *root && ngx_rbt_is_red(node->parent)) {
if (node->parent == node->parent->parent->left) {
temp = node->parent->parent->right;
if (ngx_rbt_is_red(temp)) {
ngx_rbt_black(node->parent);
ngx_rbt_black(temp);
ngx_rbt_red(node->parent->parent);
node = node->parent->parent;
} else {
if (node == node->parent->right) {
node = node->parent;
ngx_rbtree_left_rotate(root, sentinel, node);
}
ngx_rbt_black(node->parent);
ngx_rbt_red(node->parent->parent);
ngx_rbtree_right_rotate(root, sentinel, node->parent->parent);
}
} else {
temp = node->parent->parent->left;
if (ngx_rbt_is_red(temp)) {
ngx_rbt_black(node->parent);
ngx_rbt_black(temp);
ngx_rbt_red(node->parent->parent);
node = node->parent->parent;
} else {
if (node == node->parent->left) {
node = node->parent;
ngx_rbtree_right_rotate(root, sentinel, node);
}
ngx_rbt_black(node->parent);
ngx_rbt_red(node->parent->parent);
ngx_rbtree_left_rotate(root, sentinel, node->parent->parent);
}
}
}
ngx_rbt_black(*root);
}
void ngx_rbtree_insert_value(ngx_rbtree_node_t *temp, ngx_rbtree_node_t *node,
ngx_rbtree_node_t *sentinel) {
ngx_rbtree_node_t **p;
for (;;) {
p = (node->key < temp->key) ? &temp->left : &temp->right;
if (*p == sentinel) {
break;
}
temp = *p;
}
*p = node;
node->parent = temp;
node->left = sentinel;
node->right = sentinel;
ngx_rbt_red(node);
}
void ngx_rbtree_insert_timer_value(ngx_rbtree_node_t *temp,
ngx_rbtree_node_t *node, ngx_rbtree_node_t *sentinel) {
ngx_rbtree_node_t **p;
for (;;) {
/*
* Timer values
* 1) are spread in small range, usually several minutes,
* 2) and overflow each 49 days, if milliseconds are stored in 32 bits.
* The comparison takes into account that overflow.
*/
/* node->key < temp->key */
p = ((ngx_rbtree_key_int_t) node->key - (ngx_rbtree_key_int_t) temp->key
< 0) ?
&temp->left : &temp->right;
if (*p == sentinel) {
break;
}
temp = *p;
}
*p = node;
node->parent = temp;
node->left = sentinel;
node->right = sentinel;
ngx_rbt_red(node);
}
void ngx_rbtree_delete(ngx_thread_volatile ngx_rbtree_t *tree,
ngx_rbtree_node_t *node) {
ngx_uint_t red;
ngx_rbtree_node_t **root, *sentinel, *subst, *temp, *w;
/* a binary tree delete */
root = (ngx_rbtree_node_t **) &tree->root;
sentinel = tree->sentinel;
//找到y和x节点
if (node->left == sentinel) {
temp = node->right;
subst = node;
} else if (node->right == sentinel) {
temp = node->left;
subst = node;
} else {
subst = ngx_rbtree_min(node->right, sentinel);
if (subst->left != sentinel) {
temp = subst->left;
} else {
temp = subst->right;
}
}
//y节点为root节点
if (subst == *root) {
*root = temp;
ngx_rbt_black(temp);
/* DEBUG stuff */
node->left = NULL;
node->right = NULL;
node->parent = NULL;
node->key = 0;
return;
}
//
red = ngx_rbt_is_red(subst);//记录y节点颜色
//y父的孩子节点
if (subst == subst->parent->left) {
subst->parent->left = temp;
} else {
subst->parent->right = temp;
}
//y孩子的父节点
if (subst == node) {//仅仅有一个孩子节点
temp->parent = subst->parent;
} else {
if (subst->parent == node) {
temp->parent = subst;
} else {
temp->parent = subst->parent;
}
//y节点copy z节点属性
subst->left = node->left;
subst->right = node->right;
subst->parent = node->parent;
ngx_rbt_copy_color(subst, node);
if (node == *root) {
*root = subst;
} else {//删除节点的父节点的孩子节点
if (node == node->parent->left) {
node->parent->left = subst;
} else {
node->parent->right = subst;
}
}
//y节点的父节点
if (subst->left != sentinel) {
subst->left->parent = subst;
}
if (subst->right != sentinel) {
subst->right->parent = subst;
}
}
/* DEBUG stuff */
node->left = NULL;
node->right = NULL;
node->parent = NULL;
node->key = 0;
if (red) {
return;
}
/* a delete fixup */
while (temp != *root && ngx_rbt_is_black(temp)) {
if (temp == temp->parent->left) {
w = temp->parent->right;
if (ngx_rbt_is_red(w)) {
ngx_rbt_black(w);
ngx_rbt_red(temp->parent);
ngx_rbtree_left_rotate(root, sentinel, temp->parent);
w = temp->parent->right;
}
if (ngx_rbt_is_black(w->left) && ngx_rbt_is_black(w->right)) {
ngx_rbt_red(w);
temp = temp->parent;
} else {
if (ngx_rbt_is_black(w->right)) {
ngx_rbt_black(w->left);
ngx_rbt_red(w);
ngx_rbtree_right_rotate(root, sentinel, w);
w = temp->parent->right;
}
ngx_rbt_copy_color(w, temp->parent);
ngx_rbt_black(temp->parent);
ngx_rbt_black(w->right);
ngx_rbtree_left_rotate(root, sentinel, temp->parent);
temp = *root;
}
} else {
w = temp->parent->left;
if (ngx_rbt_is_red(w)) {
ngx_rbt_black(w);
ngx_rbt_red(temp->parent);
ngx_rbtree_right_rotate(root, sentinel, temp->parent);
w = temp->parent->left;
}
if (ngx_rbt_is_black(w->left) && ngx_rbt_is_black(w->right)) {
ngx_rbt_red(w);
temp = temp->parent;
} else {
if (ngx_rbt_is_black(w->left)) {
ngx_rbt_black(w->right);
ngx_rbt_red(w);
ngx_rbtree_left_rotate(root, sentinel, w);
w = temp->parent->left;
}
ngx_rbt_copy_color(w, temp->parent);
ngx_rbt_black(temp->parent);
ngx_rbt_black(w->left);
ngx_rbtree_right_rotate(root, sentinel, temp->parent);
temp = *root;
}
}
}
ngx_rbt_black(temp);
}
static ngx_inline void ngx_rbtree_left_rotate(ngx_rbtree_node_t **root,
ngx_rbtree_node_t *sentinel, ngx_rbtree_node_t *node) {
ngx_rbtree_node_t *temp;
//1、设置节点y
temp = node->right;
//2、将y的左子树作为x的右子树
node->right = temp->left;
if (temp->left != sentinel) {
temp->left->parent = node;
}
//3、链接y与x的父节点
temp->parent = node->parent;
if (node == *root) {
*root = temp;
} else if (node == node->parent->left) {
node->parent->left = temp;
} else {
node->parent->right = temp;
}
//4、x作为y的左子树
temp->left = node;
node->parent = temp;
}
static ngx_inline void ngx_rbtree_right_rotate(ngx_rbtree_node_t **root,
ngx_rbtree_node_t *sentinel, ngx_rbtree_node_t *node) {
ngx_rbtree_node_t *temp;
temp = node->left;
node->left = temp->right;
if (temp->right != sentinel) {
temp->right->parent = node;
}
temp->parent = node->parent;
if (node == *root) {
*root = temp;
} else if (node == node->parent->right) {
node->parent->right = temp;
} else {
node->parent->left = temp;
}
temp->right = node;
node->parent = temp;
}
Nginx之红黑树的更多相关文章
- 定时器管理:nginx的红黑树和libevent的堆
libevent 发生超时后, while循环一次从堆顶del timer——直到最新调整的最小堆顶不是超时事件为止,(实际是del event),但是会稍后把这个timeout的 event放到ac ...
- 红黑树、B(+)树、跳表、AVL等数据结构,应用场景及分析,以及一些英文缩写
在网上学习了一些材料. 这一篇:https://www.zhihu.com/question/30527705 AVL树:最早的平衡二叉树之一.应用相对其他数据结构比较少.windows对进程地址空间 ...
- 简单聊聊红黑树(Red Black Tree)
前言 众所周知,红黑树是非常经典,也很非常重要的数据结构,自从1972年被发明以来,因为其稳定高效的特性,40多年的时间里,红黑树一直应用在许多系统组件和基础类库中,默默无闻的为我们提供服务,身边 ...
- 红黑树和AVL树的区别(转)
add by zhj: AVL树和红黑树都是平衡二叉树,虽然AVL树是最早发明的平衡二叉树,但直接把平衡二叉树等价于AVL树,我认为非常不合适. 但很多地方都在这么用.两者的比较如下 平衡二叉树类型 ...
- 新秀nginx源代码分析数据结构篇(四)红黑树ngx_rbtree_t
新秀nginx源代码分析数据结构篇(四)红黑树ngx_rbtree_t Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.csd ...
- nginx 红黑树详解
1 介绍 这部分终于整理完了,太耗时间了,留下来备忘吧! 之前看STL源码时,只是研究了红黑树的插入部分.在stl源码剖析的书中,也没有涉及到删除操作的分析,这次对删除操作也进行了详细的研究, 并且还 ...
- 在nginx启动后,如果我们要操作nginx,要怎么做呢 别增加无谓的上下文切换 异步非阻塞的方式来处理请求 worker的个数为cpu的核数 红黑树
nginx平台初探(100%) — Nginx开发从入门到精通 http://ten 众所周知,nginx性能高,而nginx的高性能与其架构是分不开的.那么nginx究竟是怎么样的呢?这一节我们先来 ...
- 菜鸟nginx源码剖析数据结构篇(四)红黑树ngx_rbtree_t[转]
菜鸟nginx源码剖析数据结构篇(四)红黑树ngx_rbtree_t Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.csdn ...
- Nginx数据结构之红黑树ngx_rbtree_t
1. 什么是红黑树? 1.1 概述 红黑树实际上是一种自平衡二叉查找树. 二叉树是什么?二叉树是每个节点最多有两个子树的树结构,每个节点都可以用于存储数据,可以由任 1 个节点访问它的左右 子树或父节 ...
随机推荐
- 天猫首页迷思之-jquery实现左侧广告牌图片轮播
本次要实现的是天猫首页每个楼层左侧的图片轮播效果.见图: 功能点有:点击右箭头向右滑动:点击左箭头向左滑动:什么都不点自动滑动. 1.实现样式.简单分析一下大概的html结构.一个大的div里面包含两 ...
- nginx安全日志分析脚本的编写
https://blog.csdn.net/nextdoor6/article/details/51914966
- 牛客网暑期ACM多校训练营(第一场) - J Different Integers(线段数组or莫队)
链接:https://www.nowcoder.com/acm/contest/139/J来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语言1048 ...
- poj3415(后缀数组)
poj3415 题意 给定两个字符串,给出长度 \(m\) ,问这两个字符串有多少对长度大于等于 \(m\) 且完全相同的子串. 分析 首先连接两个字符串 A B,中间用一个特殊符号分割开. 按照 \ ...
- poj1743(后缀数组)
poj1743 题意 给出一个数字序列(串),现在要去寻找一个满足下列条件的子串: 长度不小于 5 存在重复的子串(如果把一个子串的所有数字都加上或减去一个值,与另一子串的数字对应相同,我们称它们重复 ...
- x-pack-crack
破解x-pack-----------1. 编辑文件:LicenseVerifier.javapackage org.elasticsearch.license;import java.nio.*;i ...
- Redis数据类型、两种模型、事务、内部命令
1.redis数据类型 a.字符串,使用场景:常规key-value缓存应用 set name lixiang get name append name 123 # 字符串追加 mset key va ...
- Best Time to Buy and Sell Stock with Cooldown -- LeetCode
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- [BZOJ 3108] 图的逆变换
Link: BZOJ 3108 传送门 Solution: 样例教你做题系列 观察第三个输出为No的样例,发现只要存在$edge(i,k),edge(j,k)$,那么$i,j$的出边一定要全部相同 于 ...
- SSO [ OAuth2.0 ]
1) SSO英文全称Single Sign On,单点登录. SSO是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统. 它包括可以将这次主要的登录映射到其他应用中用于同一个用户的 ...