找到规律之后本题就是水题了。只是找规律也不太easy的。证明这个规律成立更加不easy。

本题就是求step和mod假设GCD(最大公约数位1)那么就是Good Choice,否则为Bad Choice

为什么这个结论成立呢?

由于当GCD(step, mod) == 1的时候。那么第一次得到序列:x0, x0 + step, x0 + step…… 那么mod之后,必定下一次反复出现比x0大的数必定是x0+1,为什么呢?

由于(x0 + n*step) % mod。 且不须要考虑x0 % mod的值为多少,由于我们想知道第一次比x0大的数是多少,那么就看n*step%mod会是多少了。由于GCD(step, mod) == 1。那么n*step%mod必定是等于1。故此第一次反复出现比x0大的数必定是x0+1,那么第二次出现比x0大的数必定是x0+2。以此类推,就可得到必定会出现全部0到mod-1的数,然后才会反复出现x0.

当GCD(step, mod) != 1的时候,能够推出肯定跨过某些数了。这里不推了。

然后能够扩展这个结论。比方假设使用函数 x(n) = (x(n-1) * a + b)%mod;添加了乘法因子a。和步长b了;

那么假设是Good Choice,就必定须要GCD(a, mod) == 1,并且GCD(b, mod) == 1;

这里就偷懒不证明这个扩展结论了,并且证明这个结论须要用到线性模(Congruence)和乘法逆元的知识了。

题目:

Problem Description
Computer simulations often require random numbers. One way to generate pseudo-random numbers is via a function of the form



seed(x+1) = [seed(x) + STEP] % MOD



where '%' is the modulus operator. 



Such a function will generate pseudo-random numbers (seed) between 0 and MOD-1. One problem with functions of this form is that they will always generate the same pattern over and over. In order to minimize this effect, selecting the STEP and MOD values carefully
can result in a uniform distribution of all values between (and including) 0 and MOD-1. 



For example, if STEP = 3 and MOD = 5, the function will generate the series of pseudo-random numbers 0, 3, 1, 4, 2 in a repeating cycle. In this example, all of the numbers between and including 0 and MOD-1 will be generated every MOD iterations of the function.
Note that by the nature of the function to generate the same seed(x+1) every time seed(x) occurs means that if a function will generate all the numbers between 0 and MOD-1, it will generate pseudo-random numbers uniformly with every MOD iterations. 



If STEP = 15 and MOD = 20, the function generates the series 0, 15, 10, 5 (or any other repeating series if the initial seed is other than 0). This is a poor selection of STEP and MOD because no initial seed will generate all of the numbers from 0 and MOD-1. 



Your program will determine if choices of STEP and MOD will generate a uniform distribution of pseudo-random numbers. 
 
Input
Each line of input will contain a pair of integers for STEP and MOD in that order (1 <= STEP, MOD <= 100000).
 
Output
For each line of input, your program should print the STEP value right- justified in columns 1 through 10, the MOD value right-justified in columns 11 through 20 and either "Good Choice" or "Bad Choice" left-justified starting in column 25. The "Good Choice"
message should be printed when the selection of STEP and MOD will generate all the numbers between and including 0 and MOD-1 when MOD numbers are generated. Otherwise, your program should print the message "Bad Choice". After each output test set, your program
should print exactly one blank line.
 
Sample Input
3 5
15 20
63923 99999
 
Sample Output
3 5 Good Choice 15 20 Bad Choice 63923 99999 Good Choice

本题的代码是非常easy的:
#include <stdio.h>

inline int GCD(int a, int b)
{
return b == 0? a : GCD(b, a % b);
} int main()
{
int step, mod;
while (scanf("%d %d", &step, &mod) != EOF)
{
printf("%10d%10d ", step,mod);
if(GCD(step, mod) == 1) printf("Good Choice\n\n");
else printf("Bad Choice\n\n");
}
return 0;
}

HDU 1014 Uniform Generator 题解的更多相关文章

  1. HDU 1014 Uniform Generator(模拟和公式)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1014 Uniform Generator Time Limit: 2000/1000 MS (Java ...

  2. HDU 1014 Uniform Generator(题解)

    Uniform Generator Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. HDU 1014 Uniform Generator【GCD,水】

    Uniform Generator Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. HDU 1014:Uniform Generator

    Uniform Generator Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  5. hdu 1014.Uniform Generator 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 题目意思:给出 STEP 和 MOD,然后根据这个公式:seed(x+1) = [seed(x) ...

  6. HDU 1014 Uniform Generator 欧几里得

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 解题思路: 1. 把题目意思读懂后,明白会输入两个数,然后根据题中的公式产生一系列伪随机数,看这 ...

  7. hdu 1014 Uniform Generator 数论

    摘取于http://blog.csdn.net/kenden23/article/details/37519883: 找到规律之后本题就是水题了,不过找规律也不太容易的,证明这个规律成立更加不容易. ...

  8. HDU 1014 Uniform Generator(最大公约数,周期循环)

    #include<iostream> #include <cstdio> #include <cstring> using namespace std; int m ...

  9. 1014 Uniform Generator ACM

    http://acm.hdu.edu.cn/showproblem.php?pid=1014 题目的英文实在是太多了 ,搞不懂. 最后才知道是用公式seed(x+1) = [seed(x) + STE ...

随机推荐

  1. Fiddler抓包1-抓firefox上https请求【转载】

    本篇转自博客:上海-悠悠 原文地址:http://www.cnblogs.com/yoyoketang/p/6538021.html 前言 fiddler是一个很好的抓包工具,默认是抓http请求的, ...

  2. python爬虫搜片利器fmovice【转载】

    本篇转自博客:上海-悠悠 原文地址:http://www.cnblogs.com/yoyoketang/tag/python/ 前言 讲真!小编不管看什么电影(大的.小的),不管什么电视剧,小编都没买 ...

  3. 错误整理:容器启动报错com.sun.faces.config.WebConfiguration cannot be cast to com.sun.faces.config....

    错误集锦: 今天用Jboss部署一个web项目的时候报了个奇怪的错误(用Tomcat部署运行良好),错误信息如下:java.lang.ClassCastException: com.sun.faces ...

  4. 【原创】配置Windows Live Writer,写cnblogs博客

    20180115更新补充: 现在live writer已经改名open live writer了,需要去下载的到地址:http://openlivewriter.org/ 引言 以前写博客一般都是联网 ...

  5. 正则表达式之Regex.Matches()用法

    //提取字符串中至少连续7位的数字 string txt = "www17736123780eeeee 7377091 ddddsssss7777777"; //找到的成功匹配的集 ...

  6. 在Ubuntu/Centos使用 Let's Encrypt 证书部署 HTTPS的方法

    certbot地址 apache服务器(ubuntu环境): 1.获取软件包: $ sudo apt-get update $ sudo apt-get install software-proper ...

  7. Python的并发并行[0] -> 基本概念

    基本概念 / Basic Concept  快速跳转 进程 / Process 线程 / Thread 协程 / Coroutine 全局解释器锁 / Global Interpreter Lock ...

  8. python 字符串最长公共前缀

      编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","flow&qu ...

  9. 【 模_板 】 for NOIP 2017

    高精度 #include <cstring> #include <cstdio> #define max(a,b) (a>b?a:b) inline void read( ...

  10. linux安装mysql数据库(5.7之前的版本)

    到mysql官网下载mysql编译好的二进制安装包   解压32位安装包: 进入安装包所在目录,执行命令:tar mysql-5.6.17-linux-glibc2.5-i686.tar.gz   复 ...