多GPU设备处理点积示例,项目打包下载

 /*
* Copyright 1993-2010 NVIDIA Corporation. All rights reserved.
*
* NVIDIA Corporation and its licensors retain all intellectual property and
* proprietary rights in and to this software and related documentation.
* Any use, reproduction, disclosure, or distribution of this software
* and related documentation without an express license agreement from
* NVIDIA Corporation is strictly prohibited.
*
* Please refer to the applicable NVIDIA end user license agreement (EULA)
* associated with this source code for terms and conditions that govern
* your use of this NVIDIA software.
*
*/ #include "../common/book.h"
#include "cuda.h"
#include "device_launch_parameters.h"
#include "device_functions.h"
#include "cuda_runtime.h" #define imin(a,b) (a<b?a:b) #define N (33*1024*1024)
const int threadsPerBlock = ;
const int blocksPerGrid =
imin(, (N / + threadsPerBlock - ) / threadsPerBlock); __global__ void dot(int size, float *a, float *b, float *c) {
__shared__ float cache[threadsPerBlock];
int tid = threadIdx.x + blockIdx.x * blockDim.x;
int cacheIndex = threadIdx.x; float temp = ;
while (tid < size) {
temp += a[tid] * b[tid];
tid += blockDim.x * gridDim.x;
} // set the cache values
cache[cacheIndex] = temp; // synchronize threads in this block
__syncthreads(); //块内归约
int i = blockDim.x / ;
while (i != ) {
if (cacheIndex < i)
cache[cacheIndex] += cache[cacheIndex + i];
__syncthreads();
i /= ;
} if (cacheIndex == )
c[blockIdx.x] = cache[];
} struct DataStruct {
int deviceID;
int size;
float *a;
float *b;
float returnValue;
}; unsigned WINAPI routine(void *pvoidData)
//void* routine(void *pvoidData)
{
DataStruct *data = (DataStruct*)pvoidData;
HANDLE_ERROR(cudaSetDevice(data->deviceID)); int size = data->size;
float *a, *b, c, *partial_c;
float *dev_a, *dev_b, *dev_partial_c; // allocate memory on the CPU side
a = data->a;
b = data->b;
partial_c = (float*)malloc(blocksPerGrid*sizeof(float)); // allocate the memory on the GPU
HANDLE_ERROR(cudaMalloc((void**)&dev_a,
size*sizeof(float)));
HANDLE_ERROR(cudaMalloc((void**)&dev_b,
size*sizeof(float)));
HANDLE_ERROR(cudaMalloc((void**)&dev_partial_c,
blocksPerGrid*sizeof(float))); // copy the arrays 'a' and 'b' to the GPU
HANDLE_ERROR(cudaMemcpy(dev_a, a, size*sizeof(float),
cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(dev_b, b, size*sizeof(float),
cudaMemcpyHostToDevice)); dot <<<blocksPerGrid, threadsPerBlock >>>(size, dev_a, dev_b,
dev_partial_c);
// copy the array 'c' back from the GPU to the CPU
HANDLE_ERROR(cudaMemcpy(partial_c, dev_partial_c,
blocksPerGrid*sizeof(float),
cudaMemcpyDeviceToHost)); // finish up on the CPU side
c = ;
for (int i = ; i<blocksPerGrid; i++) {
c += partial_c[i];
} HANDLE_ERROR(cudaFree(dev_a));
HANDLE_ERROR(cudaFree(dev_b));
HANDLE_ERROR(cudaFree(dev_partial_c)); // free memory on the CPU side
free(partial_c); data->returnValue = c;
return ;
} int main(void) {
int deviceCount;
HANDLE_ERROR(cudaGetDeviceCount(&deviceCount));
//要求两个设备
if (deviceCount < ) {
printf("We need at least two compute 1.0 or greater "
"devices, but only found %d\n", deviceCount);
return ;
} float *a = (float*)malloc(sizeof(float)* N);
HANDLE_NULL(a);
float *b = (float*)malloc(sizeof(float)* N);
HANDLE_NULL(b); // fill in the host memory with data
for (int i = ; i<N; i++) {
a[i] = i;
b[i] = i * ;
} /*
为多线程做准备
每个DateStruct都为数据集大小的一半
*/
DataStruct data[];
data[].deviceID = ;
data[].size = N / ;
data[].a = a;
data[].b = b; data[].deviceID = ;
data[].size = N / ;
data[].a = a + N / ;
data[].b = b + N / ; CUTThread thread = start_thread(routine, &(data[]));
routine(&(data[]));
end_thread(thread); // free memory on the CPU side
free(a);
free(b); printf("Value calculated: %f\n",
data[].returnValue + data[].returnValue); return ;
}

多GPU设备处理点积示例的更多相关文章

  1. 利用nvidia-smi 管理和监控NVIDIA GPU设备

    NVIDIA系统管理界面介绍 原文来源:https://developer.nvidia.com/nvidia-system-management-interface NVIDIA系统管理界面(nvi ...

  2. 【VS开发】设备控制台 (DevCon.exe) 示例

    设备控制台 (DevCon.exe) 示例 本部分提供以下设备控制台 (DevCon.exe) 命令的示例: DevCon HwIDs 示例 1:查找所有硬件 ID 示例 2:使用模式查找硬件 ID ...

  3. [转载]tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定

    tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True ...

  4. tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定

    tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True ...

  5. 使用tf.ConfigProto()配置Session运行参数和GPU设备指定

    参考链接:https://blog.csdn.net/dcrmg/article/details/79091941 tf.ConfigProto()函数用在创建session的时候,用来对sessio ...

  6. tf.Session()函数的参数应用(tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定)

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/dcrmg/article/details ...

  7. OpenStack 企业私有云的若干需求(1):Nova 虚机支持 GPU

    本系列会介绍OpenStack 企业私有云的几个需求: 自动扩展(Auto-scaling)支持 多租户和租户隔离 (multi-tenancy and tenancy isolation) 混合云( ...

  8. 《CUDA并行程序设计:GPU编程指南》

    <CUDA并行程序设计:GPU编程指南> 基本信息 原书名:CUDA Programming:A Developer’s Guide to Parallel Computing with ...

  9. GPU编程自学3 —— CUDA程序初探

    深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题.这里主要记录自己的GPU自学历程. 目录 <GPU编程自学1 -- 引言> <GPU编程自学2 -- CUD ...

随机推荐

  1. Node.js 内置模块crypto使用事件方法(onreadable)加密的一些问题

    javaScript代码如下: 'use strict'; const crypto = require('crypto'); //实例化一个AES加密对象 const aesEncrept = cr ...

  2. [转]Xcode概览:调试应用程序

    原文网址: blog.csdn.net/fhbystudy/article/details/12856261 本文由CocoaChina翻译组成员Creolophus(github主页)翻译自苹果官方 ...

  3. CSS(二)关于position

    position有五种取值 前排说一个问题,2017-10-8日更新: transform会影响定位,导致fixed降级为absolute.无论是transform:translate(),scale ...

  4. 11-散列4 Hashing - Hard Version (30 分)

    Given a hash table of size N, we can define a hash function (. Suppose that the linear probing is us ...

  5. centos7虚拟机安装

    Centos7 第1章 CENTOS 7 简介 1.1 centos的演变 启动流程sysvinit 串行启动:一次一个, 一个一个启动 并行启动:全部的一起启动 init优点 运行非常良好.主要依赖 ...

  6. jQuery树形控件zTree使用

    http://www.cnblogs.com/AutumnRhyme/p/5915769.html .................................................. ...

  7. Storm概念学习系列 之数据流模型、Storm数据流模型

    不多说,直接上干货! 数据流模型 数据流模型是由数据流.数据处理任务.数据节点.数据处理任务实例等构成的一种数据模型.本节将介绍的数据流模型如图1所示. 分布式流处理系统由多个数据处理节点(node) ...

  8. Centos7搭建redis,同一服务器启动两个端口的redis

    1.安装redis [1]下载安装包 #准备安装文件夹 mkdir /usr/local/soft/redis #进入文件夹 cd /usr/local/soft/redis #下载安装包 wget ...

  9. Ashx增删改查_动软

    1.首先展示列表 ashx 讲究的是个替换 这些就是属于ashx麻烦的地方 public void ProcessRequest(HttpContext context) { context.Resp ...

  10. 个人整理的jsp、EL表达式、JSTL标签库的笔记,少概念多实用,需要的留下邮箱,会第一时间分享原稿PDF给大家!

    jsp 第一章 jsp介绍及对比servlet 作用: 动态网页技术,动态的从数据库获取数据 jsp和servlet的优缺点: jsp优点:页面表现方便,利于写html代码 jsp缺点:业务逻辑处理麻 ...