传送门

分析

我们知道如果设A,B分别为将两家店从大到小排序之后各自的前缀和,则

Ans=Max{Min{A[i],B[j]}-W*(i+j)}。

为了得到这个Ans我们可以枚举两个数的Min,然后剩下那一个则使用二分求出在另一数列中大于Min的中最小的,这样的原因是为了使得W*(i+j)更小,从而在可能情况下达到最优。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
long long a[],b[];
int main(){
long long n,m,i,j,k,w,Ans=;
scanf("%lld%lld",&n,&w);
for(i=;i<=n;i++)scanf("%lld",&a[i]);
for(i=;i<=n;i++)scanf("%lld",&b[i]);
reverse(a+,a+n+);
reverse(b+,b+n+);
for(i=;i<=n;i++)a[i]=a[i-]+a[i];
for(i=;i<=n;i++)b[i]=b[i-]+b[i];
for(i=;i<=n;i++){
long long x=lower_bound(b+,b+n+,a[i])-b;
if(x<=n)Ans=max(Ans,a[i]-w*(i+x));
}
for(i=;i<=n;i++){
long long x=lower_bound(a+,a+n+,b[i])-a;
if(x<=n)Ans=max(Ans,b[i]-w*(i+x));
}
printf("%lld\n",Ans);
return ;
}

noi.ac day1t1 candy的更多相关文章

  1. [NOI.AC#30]candy 贪心

    链接 一个直观的想法是,枚举最小的是谁,然后二分找到另外一个序列对应位置更新答案,复杂度 \(O(NlogN)\) 实际上不需要二分,因为每次当最大的变大之后,原来不行的最小值现在也一定不行,指针移动 ...

  2. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  3. # NOI.AC省选赛 第五场T1 子集,与&最大值

    NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...

  4. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  5. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  6. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  7. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

  8. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

  9. NOI.AC NOIP模拟赛 第三场 补记

    NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...

随机推荐

  1. sass入门篇

    CSS 预处理器定义了一种新的语言,其基本思想是,用一种专门的编程语言,为 CSS 增加了一些编程的特性,将 CSS 作为目标生成文件,然后开发者就只要使用这种语言进行编码工作. 通俗的说,“CSS ...

  2. 20165210 Java第三次实验报告

    20165210 实验二 敏捷开发与XP实践 一.敏捷开发与XP实践-1 实验要求: http://www.cnblogs.com/rocedu/p/4795776.html, Eclipse的内容替 ...

  3. LeetCode Minimum Absolute Difference in BST

    原题链接在这里:https://leetcode.com/problems/minimum-absolute-difference-in-bst/#/description 题目: Given a b ...

  4. swing之复杂登陆界面的实现

    package jiemian; import gonggong.message; import gonggong.messageType; import gonggong.user; import ...

  5. Unity 头发随动效果

    目标 实现角色的衣袖.头发.裙摆.披风.尾巴等,在角色运动时,可以产生随动的效果.类似王者荣耀角色展示界面. 准备 源码出出处:https://github.com/unity3d-jp/unityc ...

  6. UEditor富文本编辑器的使用 http://fex.baidu.com/ueditor/

    [转] http://fex.baidu.com/ueditor/ UEditor 介绍 UEditor 是由百度「FEX前端研发团队」开发的所见即所得富文本web编辑器,具有轻量,可定制,注重用户体 ...

  7. extjs控制器调用其他视图的函数实现控件赋值。

  8. Hudson和Jenkins的关系

    Jenkins is an open source continuous integration tool written in Java. The project was forked from H ...

  9. HBase之八--(1):HBase二级索引的设计(案例讲解)

    摘要 最近做的一个项目涉及到了多条件的组合查询,数据存储用的是HBase,恰恰HBase对于这种场景的查询特别不给力,一般HBase的查询都是通过RowKey(要把多条件组合查询的字段都拼接在RowK ...

  10. Java-API-POI-Excel:HSSFWorkbook Documentation

    ylbtech-Java-API-POI-Excel:HSSFWorkbook Documentation 1.返回顶部 1. org.apache.poi.hssf.usermodel Class ...