传送门

分析

我们知道如果设A,B分别为将两家店从大到小排序之后各自的前缀和,则

Ans=Max{Min{A[i],B[j]}-W*(i+j)}。

为了得到这个Ans我们可以枚举两个数的Min,然后剩下那一个则使用二分求出在另一数列中大于Min的中最小的,这样的原因是为了使得W*(i+j)更小,从而在可能情况下达到最优。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
long long a[],b[];
int main(){
long long n,m,i,j,k,w,Ans=;
scanf("%lld%lld",&n,&w);
for(i=;i<=n;i++)scanf("%lld",&a[i]);
for(i=;i<=n;i++)scanf("%lld",&b[i]);
reverse(a+,a+n+);
reverse(b+,b+n+);
for(i=;i<=n;i++)a[i]=a[i-]+a[i];
for(i=;i<=n;i++)b[i]=b[i-]+b[i];
for(i=;i<=n;i++){
long long x=lower_bound(b+,b+n+,a[i])-b;
if(x<=n)Ans=max(Ans,a[i]-w*(i+x));
}
for(i=;i<=n;i++){
long long x=lower_bound(a+,a+n+,b[i])-a;
if(x<=n)Ans=max(Ans,b[i]-w*(i+x));
}
printf("%lld\n",Ans);
return ;
}

noi.ac day1t1 candy的更多相关文章

  1. [NOI.AC#30]candy 贪心

    链接 一个直观的想法是,枚举最小的是谁,然后二分找到另外一个序列对应位置更新答案,复杂度 \(O(NlogN)\) 实际上不需要二分,因为每次当最大的变大之后,原来不行的最小值现在也一定不行,指针移动 ...

  2. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  3. # NOI.AC省选赛 第五场T1 子集,与&最大值

    NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...

  4. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  5. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  6. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  7. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

  8. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

  9. NOI.AC NOIP模拟赛 第三场 补记

    NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...

随机推荐

  1. Java 代码复用 —— 泛型

    public interface Comparable<T> { public int compareTo(T o); } 1. 接口(Comparable:可比较接口) public s ...

  2. OSI七层与TCP/IP五层网络架构

    OSI七层模型   OSI中的层 功能 TCP/IP协议族 应用层 文件传输,电子邮件,文件服务,虚拟终端 TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 表示层 数据格式化,代 ...

  3. Android源代码因删除所有git仓库导致的编译错误

    /******************************************************************************** * Android源代码因删除所有g ...

  4. POJ - 1324 Holedox Moving (状态压缩+BFS/A*)

    题目链接 有一个n*m(1<=n,m<=20)的网格图,图中有k堵墙和有一条长度为L(L<=8)的蛇,蛇在移动的过程中不能碰到自己的身体.求蛇移动到点(1,1)所需的最小步数. 显然 ...

  5. 图的m着色问题 (回溯搜索)

    图的m着色问题 [问题描述]        给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色.如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的 ...

  6. 程序员转项目管理之考证PMP

    转行项目经历是IT人的出路之一,最近身边有好几个同事都在备考PMP,从个人未来职业发展来看,如果你有将来转行项目管理的想法,应该去尝试考一下PMP. PMP(Project Management Pr ...

  7. python之 前端HTML/CSS基础知识学习笔记

    1. 文件结构: HTML文件的固定结构: <html> <head>...</head> <body>...</body> </ht ...

  8. 解决 No module named PyQt5.QtWebKitWidgets

    原因:在 PyQt 5.6(+) 版本中, 新增 QtWebEngineWidgets 代替QtWebKitWidgets. 示例代码:#coding: utf-8 import sysfrom Py ...

  9. Dubbo实现RPC调用使用入门

    使用Dubbo进行远程调用实现服务交互,它支持多种协议,如Hessian.HTTP.RMI.Memcached.Redis.Thrift等等.由于Dubbo将这些协议的实现进行了封装了,无论是服务端( ...

  10. CRC 简介

    CRC wiki,历史发展,各个版本的用途 等 https://en.wikipedia.org/wiki/Cyclic_redundancy_check (apple)crc32.c /* * Th ...