题目:

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

Hide Tags

Array Dynamic Programming

 

链接:  http://leetcode.com/problems/unique-paths-ii/

题解:

也是DP问题,Unique Path一样可以in place解决。要点是在设置第一行和第一列碰到obstacle的时候,要将其以及之后的所有值设置为零,因为没有路径可以达到。之后在DP扫描矩阵的时候,也要讲obstacle所在的位置清零。

Time Complexity - O(m * n), Space Complexity - O(1)。

public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int rowNum = obstacleGrid.length, colNum = obstacleGrid[0].length;
if(obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0][0] == 1){
return 0;
} for(int row = 0; row < rowNum; row ++){
if(obstacleGrid[row][0] == 0)
obstacleGrid[row][0] = 1;
else if (obstacleGrid[row][0] == 1){ //if find obstacle, set all [row,0] below obstacle to 0
for(int tempRow = row; tempRow < rowNum; tempRow ++)
obstacleGrid[tempRow][0] = 0;
break;
}
} for(int col = 1; col < colNum; col ++){
if(obstacleGrid[0][col] == 0)
obstacleGrid[0][col] = 1;
else if (obstacleGrid[0][col] == 1){ // //if find obstacle, set all [0,col] one the right of obstacle to 0
for(int tempCol = col; tempCol < colNum; tempCol ++)
obstacleGrid[0][tempCol] = 0;
break;
}
} for(int i = 1; i < rowNum; i ++){
for(int j = 1; j < colNum; j ++){
if(obstacleGrid[i][j] == 1)
obstacleGrid[i][j] = 0;
else
obstacleGrid[i][j] = obstacleGrid[i - 1][j] + obstacleGrid[i][j - 1];
}
} return obstacleGrid[rowNum - 1][colNum - 1];
}
}

二刷:

和一刷一样, 就是先判断行和列中的obstacle元素,将其与其之后的为止置零。接下来遍历整个矩阵。

Java:

Time Complexity - O(m * n), Space Complexity - O(1)。

public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0][0] == 1) {
return 0;
}
int rowNum = obstacleGrid.length, colNum = obstacleGrid[0].length;
for (int i = 0; i < rowNum; i++) {
if (obstacleGrid[i][0] == 1) {
for (int k = i; k < rowNum; k++) {
obstacleGrid[k][0] = 0;
}
break;
} else {
obstacleGrid[i][0] = 1;
}
}
for (int j = 1; j < colNum; j++) {
if (obstacleGrid[0][j] == 1) {
for (int k = j; k < colNum; k++) {
obstacleGrid[0][k] = 0;
}
break;
} else {
obstacleGrid[0][j] = 1;
}
}
for (int i = 1; i < rowNum; i++) {
for (int j = 1; j < colNum; j++) {
if (obstacleGrid[i][j] == 1) {
obstacleGrid[i][j] = 0;
} else {
obstacleGrid[i][j] = obstacleGrid[i - 1][j] + obstacleGrid[i][j - 1];
}
}
}
return obstacleGrid[rowNum - 1][colNum - 1];
}
}

三刷:

Java:

public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0][0] == 1) {
return 0;
}
int rowNum = obstacleGrid.length, colNum = obstacleGrid[0].length;
for (int i = 0; i < rowNum; i++) {
if (obstacleGrid[i][0] == 1) {
for (int k = i; k < rowNum; k++) {
obstacleGrid[k][0] = 0;
}
break;
} else {
obstacleGrid[i][0] = 1;
}
}
for (int j = 1; j < colNum; j++) {
if (obstacleGrid[0][j] == 1) {
for (int k = j; k < colNum; k++) {
obstacleGrid[0][k] = 0;
}
break;
} else {
obstacleGrid[0][j] = 1;
}
}
for (int i = 1; i < rowNum; i++) {
for (int j = 1; j < colNum; j++) {
obstacleGrid[i][j] = obstacleGrid[i][j] == 1 ? 0 : obstacleGrid[i - 1][j] + obstacleGrid[i][j - 1];
}
}
return obstacleGrid[rowNum - 1][colNum - 1];
}
}

63. Unique Paths II的更多相关文章

  1. leetcode 62. Unique Paths 、63. Unique Paths II

    62. Unique Paths class Solution { public: int uniquePaths(int m, int n) { || n <= ) ; vector<v ...

  2. 62. Unique Paths && 63 Unique Paths II

    https://leetcode.com/problems/unique-paths/ 这道题,不利用动态规划基本上规模变大会运行超时,下面自己写得这段代码,直接暴力破解,只能应付小规模的情形,当23 ...

  3. 【LeetCode】63. Unique Paths II

    Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are added to ...

  4. [LeetCode] 63. Unique Paths II 不同的路径之二

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  5. leetcode 63. Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  6. LeetCode OJ 63. Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  7. 63. Unique Paths II(中等, 能独立做出来的DP类第二个题^^)

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  8. 【一天一道LeetCode】#63. Unique Paths II

    一天一道LeetCode (一)题目 Follow up for "Unique Paths": Now consider if some obstacles are added ...

  9. [leetcode DP]63. Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

随机推荐

  1. openerp模块收藏 基于Lodop的报表打印模块(转载)

    基于Lodop的报表打印模块 原文:http://shine-it.net/index.php/topic,7397.0.html 前段时间写了个小模块,来解决OE中报表打印不方便的问题.借鉴了 @b ...

  2. apache配置VirtualHost(windows)

    以下方式适合原生 Apache, XAMPP 和WAMP 套件. 1. 打开目录 {Apache2 安装目录}\conf\extra\, 找到 httpd-vhosts.conf 文件. 2. 仿照例 ...

  3. 转学步园:jquery offset

    JQuery Offset实验与应用 我们有时候需要实现这样一种功能:点击一个按钮,然后在按钮的下方显示一个div.当按钮位于角落时,div的位置设定就需要计算,使div完全显示. 我打算使用offs ...

  4. HTTP 错误 404.3 - Not Found

    在使用win2012服务器上的IIS发布网页的时候,出现下面的错误 解决办法: 将应用程序开发下的所有功能都安装. 如果上面的方法没解决问题的话,那么看看下图中的这些安装没,没有的话就继续安装.

  5. python之类定义

    <python基础教程>第7章说python中的类定义: 1. 要么声明__metaclass__=type 2. 要么继承object. 但是直接定义下类, 也没报错: >> ...

  6. Async详解之一:流程控制

    为了适应异步编程,减少回调的嵌套,我尝试了很多库.最终觉得还是async最靠谱. 地址:https://github.com/caolan/async Async的内容分为三部分: 流程控制:简化十种 ...

  7. C++中的运算符优先级

    1   ()  []  .  ->2   !  ~   -(负号) ++  --   &(取变量地址)*   (type)(强制类型)    sizeof 3   * / % 4   + ...

  8. 屏蔽ios7中某个页面的默认手势滑回返回

    - (void)viewWillDisappear:(BOOL)animated {[super viewWillDisappear:YES];self.navigationController.in ...

  9. Jquery datatables 重载数据方法

    参考这里 { RefreshTable('#table-example', '/BlogManage/GetLabelData'); } function RefreshTable(tableId, ...

  10. 【最小生成树】BZOJ 1196: [HNOI2006]公路修建问题

    1196: [HNOI2006]公路修建问题 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1435  Solved: 810[Submit][Sta ...