matrix

找规律

题意:给定一个 N*N 的只有 0 和 1 的矩阵,有 Q 个操作,分三种:1. 将某行上的所有数字取反;2. 将某列上的所有数字取反;3. 输出 sum{ a[i][j]*a[j][i] } mod 2。N <=1000,Q<=5*10^5。

解法:初看题目会觉得很棘手。然后可以发现,对于不在对角线上的点,a[i][j]*a[j][i] 会被累加两次(一次是在计算 (i, j) 时,另一次是在计算 (j, i) 时),由同余定理可知,无论 a[i][j] 或 a[j][i] 的值为多少,都不会影响到求余的结果。所以对角线上的 a(i, i) 才是影响结果的关键。当对角线上的 1 的个数为奇数时,答案就为 1;否则为 0。那么我们可以设一个变量 ans,ans 的初始值由扫描初始矩阵得到。每进行一次 1 或 2 操作,就将 ans 取反。遇到 3 操作直接输出即可。

 

steins

贪心

题意:给出一些顺序排列的长短不一的矩形,宽度都为 1,要用宽度为 1 的刷子进行横向或竖向填充,问最小填充次数使得所有矩形被完全填充。

初步解法:一个只能骗很少部分分的算法:每次选择高度最小的矩形,记其高度为 h,分别向左右进行横向填充,则这一步的填充次数为 h。不断重复此步骤。这种算法完全抛弃了竖向的填充方式,很明显拿不了多少分数。

正解:不算严格意义上的贪心,有点像贪心和动规的结合。对于区间 [l, r],找到区间内的最小高度 h,此时有两种决策:1. 用横向方式填充最短矩形,然后递归两个子区间;2. 用纵向方式填充区间内所有矩形。计算出两种决策分别的花费,取其较小值。

 

archer

扫描线+线段树

题意:求矩形并的面积。

初步解法:模拟。出题人很良心地给了 30 分。

正解:其实是很经典的题目,之前在书上也看到过类似的求矩形并的周长的方法(POJ 的 Picture 一题),但是从来没写过。

假设有一条扫描线,从左往右扫描,遇到矩形的入边就将其投影到线段树上,遇到矩形的出边就将其从线段树上删去。每次累加扫描到的相邻两条线段的横坐标之差与线段树上的总线段长度的乘积。

上面这段话很笼统,更详细地说:

  1. 将题目给的每个矩形拆分成左右两条边,记录边的长度、横坐标、是入边还是出边,并将所有边排序;
  2. 顺序枚举每条边,如果是入边就将其插入到线段树,如果是出边就将其从线段树中删除,具体实现:
    1. 为线段树的每个结点增加两个域:cover 与 total。cover 表示该线段(注意只是本结点而不包含子树)被完整地覆盖了多少次,total 表示该线段内 cover>0 的线段总长度;
    2. 每次插入一条线段,就将其对应的线段树结点的 cover 加 1;删除一条线段则反之。那么 cover>0 就表示该结点对应的线段被完全覆盖,则其 total = right-left;如果 cover=0 就表示该结点对应的线段没有被完全覆盖,但是有可能被部分覆盖,则其 total 由左右子树累加得到;
  3. 插入(删除)一条边后累加答案,累加的值为:本次扫描到的边的横坐标减去上次扫描到的边的横坐标乘以目前线段树中被覆盖的线段总长度,即 ans += (x(i)-x(i-1))*root.total。

省常中模拟 Test3 Day2的更多相关文章

  1. 省常中模拟 Test2 Day2

    two 模拟 大意:给你一个 N 位二进制数,有四种操作:加1.减1.乘2.整除2.给定一个操作序列,求最终结果.N <= 5*10^6.数据保证不会在最高位上进行进位或退位操作. 初步解法:由 ...

  2. 省常中模拟 Test3 Day1

    tile 贪心 题意:给出一个矩形,用不同字母代表的正方形填充,要求相邻的方块字母不能相同,求字典序(将所有行拼接起来)最小的方案. 初步解法:一开始没怎么想,以为策略是每次填充一个尽量大的正方形.但 ...

  3. 省常中模拟 day2

    第一题: 题目大意: 有mn颗糖,要装进k个盒子里,使得既可以平均分给n个人,也可以平均分给m个人. 求k的最小值. 解题过程: 1.先看一组小数据(13,21).那么根据贪心的原则很容易想到先拿13 ...

  4. 省常中模拟 day1

    第一题: 题目大意: 给出N个数的数列,如果相邻的两个数加起来是偶数,那么就可以把这两个数消掉,求最多能消掉多少数. 解题过程: 1.先自己手工模拟了几组数据,发现不管消除的顺序如何,最终剩下的是一定 ...

  5. 省常中模拟 Test4

    prime 数论 题意:分别求 1*n.2*n.3*n.... n*n 关于模 p 的逆元.p 是质数,n < p. 初步解法:暴力枚举.因为 a 关于模 p 的逆元 b 满足 ab mod p ...

  6. 省常中模拟 Test1 Day1

    临洮巨人 排序 题意:在字符串中找出 A.B.C 三个字母出现次数相同的区间个数. 初步的解法是前缀和,用 a(i), b(i), c(i) 表示在位置 i 之前(包括 i)各有 字母 A.B.C 多 ...

  7. CH Round #55 - Streaming #6 (NOIP模拟赛day2)

    A.九九归一 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2355%20-%20Streaming%20%236%20(NOIP模拟赛day2)/九九归一 题 ...

  8. 如何在C#中模拟C++的联合(Union)?[C#, C++] How To Simulate C++ Union In C#?

    1 什么是联合? 联合(Union)是一种特殊的类,一个联合中的数据成员在内存中的存储是互相重叠的.每个数据成员都在相同的内存地址开始.分配给联合的存储区数量是“要包含它最大的数据成员”所需的内存数. ...

  9. Python中模拟enum枚举类型的5种方法分享

    这篇文章主要介绍了Python中模拟enum枚举类型的5种方法分享,本文直接给出实现代码,需要的朋友可以参考下   以下几种方法来模拟enum:(感觉方法一简单实用) 复制代码代码如下: # way1 ...

随机推荐

  1. WebStorm 9 注册码

    UserName:William ===== LICENSE BEGIN ===== 45550-12042010 00001SzFN0n1bPII7FnAxnt0DDOPJA INauvJkeVJB ...

  2. [设计模式] 18 备忘录模式Memento Pattern

    在GOF的<设计模式:可复用面向对象软件的基础>一书中对备忘录模式是这样说的:在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态.这样以后就可将该对象恢复到原先保存 ...

  3. Javascript通过className选择元素

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  4. Java中LinkedList的remove方法真的耗时O(1)吗?

    这个问题其实来源于Leetcode的一道题目,也就是上一篇日志 LRU Cache.在使用LinkedList超时后,换成ArrayList居然AC了,而问题居然是在于List.remove(Obje ...

  5. Java实现二维码QRCode的编码和解码

    涉及到的一些主要类库,方便大家下载: 编码lib:Qrcode_swetake.jar   (官网介绍-- http://www.swetake.com/qr/index-e.html) 解码lib: ...

  6. cojs 简单的求和问题 解题报告

    一个上午写了两个数据生成器,三个暴力和两个正解以及一个未竣工的伪正解思路 真是累死本宝宝了 首先这个题目暴力我的数据是有很多良心分的 但是不同的暴力拿到的分数也会有所差距,由于是题解就不说暴力怎么写了 ...

  7. springmvc文件上传2中方法

    基于前面文章的基础上. 一.准备 需要的jar  二.配置 1.  spmvc-servlet.xml <?xml version="1.0" encoding=" ...

  8. java登陆验证码与JS无刷新验证

    最近公司的项目的登陆模块由我负责,所以就做了个登陆小功能进行练手,其包括了用jQuery对用户名和密码进行不为null验证,和出于安全性考虑加了一个验证码的校验 别的不说先上代码 controller ...

  9. VCL源码分析方法论(以TButton.Caption属性的由来为例)

    最近一段时间似乎流行源码分析:)我也来谈谈在过去一段时间里对VCL源码的分析方法方面的一点体会,本文将不探讨VCL类库的构架和设计模式方面的东本,只是以我们常见的控件属性/方法的实现过程作简单的说明, ...

  10. java:访问权限

    访问权限四大类:权限从大->小 1.public:   公共权限 2.protected:  受保护权限 3.default: 包级别访问权限/默认权限 4.private:   私有权限 以p ...