余弦相似性

原理:首先我们先把两段文本分词,列出来所有单词,其次我们计算每个词语的词频,最后把词语转换为向量,这样我们就只需要计算两个向量的相似程度.
 
我们简单表述如下
 
文本1:我/爱/北京/天安门/ 经过分词求词频得出向量(伪向量)  [1,1,1,1]
 
文本2:我们/都爱/北京/天安门/ 经过分词求词频得出向量(伪向量)  [1,0,1,2]
 
我们可以把它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向。两条线段之间形成一个夹角,如果夹角为0度,意味着方向相同、线段重合;如果夹角为90度,意味着形成直角,方向完全不相似;如果夹角为180度,意味着方向正好相反。因此,我们可以通过夹角的大小,来判断向量的相似程度。夹角越小,就代表越相似。
 
C#核心算法
 
 
 
    public class TFIDFMeasure
    {
        private string[] _docs;
        private string[][] _ngramDoc;
        private int _numDocs=0;
        private int _numTerms=0;
        private ArrayList _terms;
        private int[][] _termFreq;
        private float[][] _termWeight;
        private int[] _maxTermFreq;
        private int[] _docFreq;
 
 
        public class TermVector
        {        
            public static float ComputeCosineSimilarity(float[] vector1, float[] vector2)
            {
                if (vector1.Length != vector2.Length)                
                    throw new Exception("DIFER LENGTH");
                
 
                float denom=(VectorLength(vector1) * VectorLength(vector2));
                if (denom == 0F)                
                    return 0F;                
                else                
                    return (InnerProduct(vector1, vector2) / denom);
                
            }
 
            public static float InnerProduct(float[] vector1, float[] vector2)
            {
            
                if (vector1.Length != vector2.Length)
                    throw new Exception("DIFFER LENGTH ARE NOT ALLOWED");
                
            
                float result=0F;
                for (int i=0; i < vector1.Length; i++)                
                    result += vector1[i] * vector2[i];
                
                return result;
            }
        
            public static float VectorLength(float[] vector)
            {            
                float sum=0.0F;
                for (int i=0; i < vector.Length; i++)                
                    sum=sum + (vector[i] * vector[i]);
                        
                return (float)Math.Sqrt(sum);
            }
 
        }
 
        private IDictionary _wordsIndex=new Hashtable() ;
 
        public TFIDFMeasure(string[] documents)
        {
            _docs=documents;
            _numDocs=documents.Length ;
            MyInit();
        }
 
        private void GeneratNgramText()
        {
            
        }
 
        private ArrayList GenerateTerms(string[] docs)
        {
            ArrayList uniques=new ArrayList() ;
            _ngramDoc=new string[_numDocs][] ;
            for (int i=0; i < docs.Length ; i++)
            {
                Tokeniser tokenizer=new Tokeniser() ;
                string[] words=tokenizer.Partition(docs[i]);            
 
                for (int j=0; j < words.Length ; j++)
                    if (!uniques.Contains(words[j]) )                
                        uniques.Add(words[j]) ;
                                
            }
            return uniques;
        }
        
 
 
        private static object AddElement(IDictionary collection, object key, object newValue)
        {
            object element=collection[key];
            collection[key]=newValue;
            return element;
        }
 
        private int GetTermIndex(string term)
        {
            object index=_wordsIndex[term];
            if (index == null) return -1;
            return (int) index;
        }
 
        private void MyInit()
        {
            _terms=GenerateTerms (_docs );
            _numTerms=_terms.Count ;
 
            _maxTermFreq=new int[_numDocs] ;
            _docFreq=new int[_numTerms] ;
            _termFreq =new int[_numTerms][] ;
            _termWeight=new float[_numTerms][] ;
 
            for(int i=0; i < _terms.Count ; i++)            
            {
                _termWeight[i]=new float[_numDocs] ;
                _termFreq[i]=new int[_numDocs] ;
 
                AddElement(_wordsIndex, _terms[i], i);            
            }
            
            GenerateTermFrequency ();
            GenerateTermWeight();            
                
        }
        
        private float Log(float num)
        {
            return (float) Math.Log(num) ;//log2
        }
 
        private void GenerateTermFrequency()
        {
            for(int i=0; i < _numDocs  ; i++)
            {                                
                string curDoc=_docs[i];
                IDictionary freq=GetWordFrequency(curDoc);
                IDictionaryEnumerator enums=freq.GetEnumerator() ;
                _maxTermFreq[i]=int.MinValue ;
                while (enums.MoveNext())
                {
                    string word=(string)enums.Key;
                    int wordFreq=(int)enums.Value ;
                    int termIndex=GetTermIndex(word);
 
                    _termFreq [termIndex][i]=wordFreq;
                    _docFreq[termIndex] ++;
 
                    if (wordFreq > _maxTermFreq[i]) _maxTermFreq[i]=wordFreq;                    
                }
            }
        }
        
 
        private void GenerateTermWeight()
        {            
            for(int i=0; i < _numTerms   ; i++)
            {
                for(int j=0; j < _numDocs ; j++)                
                    _termWeight[i][j]=ComputeTermWeight (i, j);                
            }
        }
 
        private float GetTermFrequency(int term, int doc)
        {            
            int freq=_termFreq [term][doc];
            int maxfreq=_maxTermFreq[doc];            
            
            return ( (float) freq/(float)maxfreq );
        }
 
        private float GetInverseDocumentFrequency(int term)
        {
            int df=_docFreq[term];
            return Log((float) (_numDocs) / (float) df );
        }
 
        private float ComputeTermWeight(int term, int doc)
        {
            float tf=GetTermFrequency (term, doc);
            float idf=GetInverseDocumentFrequency(term);
            return tf * idf;
        }
        
        private  float[] GetTermVector(int doc)
        {
            float[] w=new float[_numTerms] ;
            for (int i=0; i < _numTerms; i++)                                            
                w[i]=_termWeight[i][doc];
            
                
            return w;
        }
 
        public float GetSimilarity(int doc_i, int doc_j)
        {
            float[] vector1=GetTermVector (doc_i);
            float[] vector2=GetTermVector (doc_j);
 
            return TermVector.ComputeCosineSimilarity(vector1, vector2) ;
 
        }
        
        private IDictionary GetWordFrequency(string input)
        {
            string convertedInput=input.ToLower() ;
                    
            Tokeniser tokenizer=new Tokeniser() ;
            String[] words=tokenizer.Partition(convertedInput);            
            Array.Sort(words);
            
            String[] distinctWords=GetDistinctWords(words);
                        
            IDictionary result=new Hashtable();
            for (int i=0; i < distinctWords.Length; i++)
            {
                object tmp;
                tmp=CountWords(distinctWords[i], words);
                result[distinctWords[i]]=tmp;
                
            }
            
            return result;
        }                
                
        private string[] GetDistinctWords(String[] input)
        {                
            if (input == null)            
                return new string[0];            
            else
            {
                ArrayList list=new ArrayList() ;
                
                for (int i=0; i < input.Length; i++)
                    if (!list.Contains(input[i])) // N-GRAM SIMILARITY?                
                        list.Add(input[i]);
                
                return Tokeniser.ArrayListToArray(list) ;
            }
        }
        
 
        
        private int CountWords(string word, string[] words)
        {
            int itemIdx=Array.BinarySearch(words, word);
            
            if (itemIdx > 0)            
                while (itemIdx > 0 && words[itemIdx].Equals(word))                
                    itemIdx--;                
                        
            int count=0;
            while (itemIdx < words.Length && itemIdx >= 0)
            {
                if (words[itemIdx].Equals(word)) count++;                
                
                itemIdx++;
                if (itemIdx < words.Length)                
                    if (!words[itemIdx].Equals(word)) break;                    
                
            }
            
            return count;
        }                
    }
 
缺点
 
 由于有可能一个文章的特征向量词特别多导致整个向量维度很高,使得计算的代价太大不适合大数据量的计算。
 
SimHash
原理
 
算法的主要思想是降维,将高维的特征向量映射成一个f-bit的指纹(fingerprint),通过比较两篇文章的f-bit指纹的Hamming Distance来确定文章是否重复或者高度近似。由于每篇文章我们都可以事先计算好Hamming Distance来保存,到时候直接通过Hamming Distance来计算,所以速度非常快适合大数据计算。
 
Google就是基于此算法实现网页文件查重的。我们假设有以下三段文本:
 
1,the cat sat on the mat
 
2,the cat sat on a mat
 
3,we all scream for ice cream
 
如何实现这种hash算法呢?以上述三个文本为例,整个过程可以分为以下六步: 
1、选择simhash的位数,请综合考虑存储成本以及数据集的大小,比如说32位 
2、将simhash的各位初始化为0 
3、提取原始文本中的特征,一般采用各种分词的方式。比如对于"the cat sat on the mat",采用两两分词的方式得到如下结果:{"th", "he", "e ", " c", "ca", "at", "t ", " s", "sa", " o", "on", "n ", " t", " m", "ma"} 
4、使用传统的32位hash函数计算各个word的hashcode,比如:"th".hash = -502157718 
,"he".hash = -369049682,…… 
5、对各word的hashcode的每一位,如果该位为1,则simhash相应位的值加1;否则减1 
6、对最后得到的32位的simhash,如果该位大于1,则设为1;否则设为0

.NET下文本相似度算法余弦定理和SimHash浅析及应用的更多相关文章

  1. 文本相似度算法——空间向量模型的余弦算法和TF-IDF

    1.信息检索中的重要发明TF-IDF TF-IDF是一种统计方法,TF-IDF的主要思想是,如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分 ...

  2. 文本相似度 余弦值相似度算法 VS L氏编辑距离(动态规划)

    设置n为字符串s的长度.("我是个小仙女") 设置m为字符串t的长度.("我不是个小仙女") 如果n等于0,返回m并退出.如果m等于0,返回n并退出.构造两个向 ...

  3. 从0到1,了解NLP中的文本相似度

    本文由云+社区发表 作者:netkiddy 导语 AI在2018年应该是互联网界最火的名词,没有之一.时间来到了9102年,也是项目相关,涉及到了一些AI写作相关的功能,为客户生成一些素材文章.但是, ...

  4. 4. 文本相似度计算-CNN-DSSM算法

    1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 之前介绍了DSSM算法,它主要是用了DN ...

  5. 3. 文本相似度计算-DSSM算法

    1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 最近在学习文本相似度的计算,前面两篇文章 ...

  6. python结巴分词余弦相似度算法实现

    过余弦相似度算法计算两个字符串之间的相关度,来对关键词进行归类.重写标题.文章伪原创等功能, 让你目瞪口呆.以下案例使用的母词文件均为txt文件,两种格式:一种内容是纯关键词的txt,每行一个关键词就 ...

  7. Spark/Scala实现推荐系统中的相似度算法(欧几里得距离、皮尔逊相关系数、余弦相似度:附实现代码)

    在推荐系统中,协同过滤算法是应用较多的,具体又主要划分为基于用户和基于物品的协同过滤算法,核心点就是基于"一个人"或"一件物品",根据这个人或物品所具有的属性, ...

  8. Finding Similar Items 文本相似度计算的算法——机器学习、词向量空间cosine、NLTK、diff、Levenshtein距离

    http://infolab.stanford.edu/~ullman/mmds/ch3.pdf 汇总于此 还有这本书 http://www-nlp.stanford.edu/IR-book/ 里面有 ...

  9. 机器学习综合库gensim 简单搞定文本相似度

    不废话直接代码吧 # 1.模块导入 import jieba import gensim from gensim import corpora from gensim import models fr ...

随机推荐

  1. php获取客户端ip地址

    本文介绍一个,php获取客户端的IP地址的实例代码,有需要的朋友参考下吧. 获取客户端IP地址的代码,如下: 复制代码代码示例: <?php//取得客户端IP的函数function get_cl ...

  2. lnmp安装--linux通过tar.gz源码包安装mysql

    mysql版本:5.6 [http://cdn.mysql.com/Downloads/MySQL-5.6/mysql-5.6.22.tar.gz] [http://dev.mysql.com/get ...

  3. Linux各发行版本 优缺点 简介

    2008.01.21 13:43 Linux最早由Linus Benedict Torvalds在1991年开始编写.在这之前,RichardStallman创建了Free SoftwareFound ...

  4. 2014年辛星完全解读Javascript第八节 json

    json是JavaScript Object Notation的简写,它是一种轻量级的数据交换格式,而且表达上很容易靠字面去理解.json是用于存储和传输数据的格式,通常用于向服务器端传递数据. ** ...

  5. html input type="button" 页面跳转

    <div class="message_text"> <p>你的申请已提交,请耐心等候哦!~</p><br /> <input ...

  6. shutdown彻底关闭tomcat,以及多线程关闭

    最近做的一个Web项目,发现shutdown.sh后,无法关掉tomcat进程. ps -ef | grep tomcat 返回tomcat进程仍然存在.经过调查发现是因为在Web应用中启动了线程池, ...

  7. ACM题集以及各种总结大全!

    ACM题集以及各种总结大全! 虽然退役了,但是整理一下,供小弟小妹们以后切题方便一些,但由于近来考试太多,顾退役总结延迟一段时间再写!先写一下各种分类和题集,欢迎各位大牛路过指正. 一.ACM入门 关 ...

  8. java中线程池的使用方法

    1 引入线程池的原因 由于线程的生命周期中包括创建.就绪.运行.阻塞.销毁阶段,当我们待处理的任务数目较小时,我们可以自己创建几个线程来处理相应的任务,但当有大量的任务时,由于创建.销毁线程需要很大的 ...

  9. 如何在CHROME里调试前端代码?

    以前看前端们调得很神的, 刚看书到这里,作一个记录,演练了一下,确实有点神!!! :) <!DOCTYPE html> <html lang="en"> & ...

  10. nginx负载均衡和反向代理有什么区别

    近在研究nginx的负载均衡和反向代理,先看下这两个简单的配置吧! 负载均衡 worker_processes 1; events { worker_connections 1024; } http{ ...