http://mysql.taobao.org/monthly/2016/06/01/

innodb行锁简介

  1. 行锁类型
    LOCK_S:共享锁
LOCK_X: 排他锁
  1. GAP类型
    LOCK_GAP:只锁间隙
LOCK_REC_NO_GAP:只锁记录
LOCK_ORDINARY: 锁记录和记录之前的间隙
LOCK_INSERT_INTENTION: 插入意向锁,用于insert时检查锁冲突

每个行锁由锁类型和GAP类型组成
例如:
LOCK_X|LOCK_ORDINARY 表示对记录和记录之前的间隙加排他锁
LOCK_S|LOCK_GAP 表示只对记录前的间隙加共享锁

锁的兼容性:
值得注意的是,持有GAP的锁(LOCK_GAP和LOCK_ORDINARY)与其他非LOCK_INSERT_INTENTION的锁都是兼容的,也就是说,GAP锁就是为了防止插入的。

详细可以参考之前的月报

innodb 锁分裂、继承与迁移

这里的锁分裂和合并,只是针对innodb行锁而言的,而且一般只作用于GAP类型的锁。

  • 锁分裂

    插入的记录的间隙存在GAP锁,此时此GAP需分裂为两个GAP

  lock_rec_inherit_to_gap_if_gap_lock:

  for (lock = lock_rec_get_first(block, heap_no);
lock != NULL;
lock = lock_rec_get_next(heap_no, lock)) { if (!lock_rec_get_insert_intention(lock)
&& (heap_no == PAGE_HEAP_NO_SUPREMUM
|| !lock_rec_get_rec_not_gap(lock))) { lock_rec_add_to_queue(
LOCK_REC | LOCK_GAP | lock_get_mode(lock),
block, heir_heap_no, lock->index,
lock->trx, FALSE);
}
}
  • 锁继承

    删除的记录前存在GAP锁,此GAP锁会继承到要删除记录的下一条记录上

  lock_rec_inherit_to_gap:

  for (lock = lock_rec_get_first(block, heap_no);
lock != NULL;
lock = lock_rec_get_next(heap_no, lock)) { if (!lock_rec_get_insert_intention(lock)
&& !((srv_locks_unsafe_for_binlog
|| lock->trx->isolation_level
<= TRX_ISO_READ_COMMITTED)
&& lock_get_mode(lock) ==
(lock->trx->duplicates ? LOCK_S : LOCK_X))) { lock_rec_add_to_queue(
LOCK_REC | LOCK_GAP | lock_get_mode(lock),
heir_block, heir_heap_no, lock->index,
lock->trx, FALSE);
}
}
  • 锁迁移

    B数结构变化,锁信息也会随之迁移. 锁迁移过程中也涉及锁继承。

锁分裂示例

  • 锁分裂例子
set global tx_isolation='repeatable-read';

create table t1(c1 int primary key, c2 int unique) engine=innodb;
insert into t1 values(1,1); begin;
# supremum 记录上加 LOCK_X|LOCK_GAP 锁住(1~)
select * from t1 where c2=2 for update;
# 发现插入(3,3)的间隙存在GAP锁,因此给(3,3)加LOCK_X | LOCK_GAP锁。这样依然锁住了(1~)
insert into t1 values(3,3);

这里如果插入(3,3)没有给(3,3)加LOCK_X | LOCK_GAP,那么其他连接插入(2,2)就可以成功

锁继承示例

  • 隔离级别repeatable-read

    验证:session 1执行insert into t1 values(1,1)发生了锁等待,说明(2,2)上有gap锁

mysql> select * from information_schema.innodb_locks;
+------------------------+-------------+-----------+-----------+-----------------+------------+------------+-----------+----------+-----------+
| lock_id | lock_trx_id | lock_mode | lock_type | lock_table | lock_index | lock_space | lock_page | lock_rec | lock_data |
+------------------------+-------------+-----------+-----------+-----------------+------------+------------+-----------+----------+-----------+
| 16582717714:888654:4:3 | 16582717714 | X,GAP | RECORD | `cleaneye`.`t1` | c2 | 888654 | 4 | 3 | 2 |
| 16582692183:888654:4:3 | 16582692183 | X,GAP | RECORD | `cleaneye`.`t1` | c2 | 888654 | 4 | 3 | 2 |
+------------------------+-------------+-----------+-----------+-----------------+------------+------------+-----------+----------+-----------+
2 rows in set (0.01 sec)
其中session 2 在(2,2) 加了LOCK_X|LOCK_GAP
session 1 在(2,2) 加了LOCK_X|LOCK_GAP|LOCK_INSERT_INTENTION. LOCK_INSERT_INTENTION与LOCK_GAP冲突发生等待
  • 隔离级别read-committed

验证: session 1执行insert into t1 values(1)发生了锁等待,说明(2)上有gap锁

mysql> select * from information_schema.innodb_locks;
+------------------------+-----------------+-----------+-----------+-------------+------------+------------+-----------+----------+-----------+
| lock_id | lock_trx_id | lock_mode | lock_type | lock_table | lock_index | lock_space | lock_page | lock_rec | lock_data |
+------------------------+-----------------+-----------+-----------+-------------+------------+------------+-----------+----------+-----------+
| 1705:32:3:3 | 1705 | X,GAP | RECORD | `test`.`t1` | PRIMARY | 32 | 3 | 3 | 2 |
| 421590768578232:32:3:3 | 421590768578232 | S,GAP | RECORD | `test`.`t1` | PRIMARY | 32 | 3 | 3 | 2 |
+------------------------+-----------------+-----------+-----------+-------------+------------+------------+-----------+----------+-----------+
X.GAP insert 加锁LOCK_X | LOCK_GAP | LOCK_INSERT_INTENTION
S.GAP 加锁LOCK_S|LOCK_GAP,记录(2)从删除的记录(1)继承过来的GAP锁

而实际在读提交隔离级别上,insert into t1 values(1)应该可以插入成功,不需要等待的,这个锁是否继承值得商榷。

来看一个插入成功的例子

  • 隔离级别serializable

    验证方法同read-committed。

B树结构变化与锁迁移

B树节点发生分裂,合并,删除都会引发锁的变化。锁迁移的原则是,B数结构变化前后,锁住的范围保证不变。
我们通过例子来说明

  • 节点分裂

    假设原节点A(infimum,1,3,supremum) 向右分裂为B(infimum,1,supremum), C(infimum,3,supremum)两个节点
    > infimum为节点中虚拟的最小记录,supremum为节点中虚拟的最大记录

    假设原节点A上锁为3上LOCK_S|LOCK_ORIDNARY,supremum为LOCK_S|LOCK_GAP,实际锁住了(1~)
    锁迁移过程大致为:

    1. 将3上的gap锁迁移到C节点3上
    2. 将A上supremum迁移继承到C的supremum上
    3. 将C上最小记录3的锁迁移继承到B的supremum上

    迁移完成后锁的情况如下(lock_update_split_right)
    B节点:suprmum LOCK_S|LOCK_GAP
    C节点:3 LOCK_S|LOCK_ORINARY, suprmum LOCK_S|GAP

    迁移后仍然锁住了范围(1~)

    节点向左分裂情形类似

  • 节点合并

    以上述节点分裂的逆操作来讲述合并过程
    B(infimum,1,supremum), C(infimum,3,supremum)两个节点,向左合并为A节点(infimum,1,3,supremum)
    其中B,C节点锁情况如下
    B节点:suprmum LOCK_S|LOCK_GAP
    C节点:3 LOCK_S|LOCK_ORINARY, suprmum LOCK_S|GAP

    迁移流程如下(lock_update_merge_left):

    1)将C节点锁记录3迁移到B节点

    2)将B节点supremum迁移继承到A的supremum上

    迁移后仍然锁住了范围(1~)

    节点向右合并情形类似

  • 节点删除

    如果删除节点存在左节点,则将删除节点符合条件的锁,迁移继承到左节点supremum上
    否则将删除节点符合条件的锁,迁移继承到右节点最小用户记录上
    参考lock_update_discard

锁继承相关的BUG

bug#73170 二级唯一索引失效。这个bug触发条件是删除的记录没有被purge, 锁还没有被继承的。如果锁继承了就不会出现问题。

bug#76927 同样是二级唯一索引失效。这个bug是锁继承机制出了问题。

以上两个bug详情参考这里

MySQL · 特性分析 · innodb 锁分裂继承与迁移的更多相关文章

  1. innodb 锁分裂继承与迁移

    innodb行锁简介 行锁类型 LOCK_S:共享锁 LOCK_X: 排他锁 GAP类型 LOCK_GAP:只锁间隙 LOCK_REC_NO_GAP:只锁记录 LOCK_ORDINARY: 锁记录和记 ...

  2. MySQL · 特性分析 · 优化器 MRR & BKA【转】

    MySQL · 特性分析 · 优化器 MRR & BKA 上一篇文章咱们对 ICP 进行了一次全面的分析,本篇文章小编继续为大家分析优化器的另外两个选项: MRR & batched_ ...

  3. MySQL · 特性分析 · MDL 实现分析

    http://mysql.taobao.org/monthly/2015/11/04/ 前言 在MySQL中,DDL是不属于事务范畴的,如果事务和DDL并行执行,操作相关联的表的话,会出现各种意想不到 ...

  4. MySQL · 特性分析 · 内部临时表

    http://mysql.taobao.org/monthly/2016/06/07/#rd MySQL中的两种临时表 外部临时表 通过CREATE TEMPORARY TABLE 创建的临时表,这种 ...

  5. MySQL 5.7 InnoDB锁

    简介 参考https://dev.mysql.com/doc/refman/5.7/en/innodb-locking.html#innodb-gap-locks. InnoDB引擎实现了标准的行级别 ...

  6. Innodb锁的类型

    Innodb锁的类型 行锁(record lock) 行锁总是对索引上锁,如果某个表没有定义索引,mysql就会使用默认创建的聚集索引,行锁有S锁和X锁两种类型. 共享锁和排它锁 Innodb锁有两种 ...

  7. mysql InnoDB锁等待的查看及分析

    说明:前面已经了解了InnoDB关于在出现锁等待的时候,会根据参数innodb_lock_wait_timeout的配置,判断是否需要进行timeout的操作,本文档介绍在出现锁等待时候的查看及分析处 ...

  8. MySQL数据恢复和复制对InnoDB锁机制的影响

    MySQL通过BINLOG记录执行成功的INSERT,UPDATE,DELETE等DML语句.并由此实现数据库的恢复(point-in-time)和复制(其原理与恢复类似,通过复制和执行二进制日志使一 ...

  9. InnoDB锁机制分析

    InnoDB锁机制常常困扰大家,不同的条件下往往表现出不同的锁竞争,在实际工作中经常要分析各种锁超时.死锁的问题.本文通过不同条件下的实验,利用InnoDB系统给出的各种信息,分析了锁的工作机制.通过 ...

随机推荐

  1. 抽屉显示控件SlidingDrawer入门

    SlidingDrawer是一个抽屉控件,代码具体路径为:android.widget.SlidingDrawer,该控件从API  Level3引入,在API 17及之后的版本将不再被支持.具体效果 ...

  2. 一个【wchar_t】引发的学案

    今天在查cout  wcout区别的时候,看到一篇博客(http://blog.csdn.net/hikaliv/article/details/4570956) 里面讲到了wchar_t ----- ...

  3. CentOS VPS创建pptpd VPN服务

    原文地址http://www.hi-vps.com/wiki/doku.php?id=xen_vps_centos6_install_pptpd CentOS VPS创建pptpd VPN服务 Xen ...

  4. Tkinter教程之Canvas篇(4)

    本文转载自:http://blog.csdn.net/jcodeer/article/details/1812091 '''Tkinter教程之Canvas篇(4)''''''22.绘制弧形'''#  ...

  5. Downloading the Google Cloud Storage Client Library

    Google Cloud Storage client是一个客户端库,与任何一个生产环境使用的App Engine版本都相互独立.如果你想使用App Engine Development server ...

  6. 超简单fedora20(linux)下JDK1.8的安装

    (博客园-番茄酱原创) 去官网下载linux版本的jdk,如果你的fedora是64位,就选择64位的jdk,jdk-8u20-linux-x64.tar.gz. 将下载好的jdk解压到当前目录下,解 ...

  7. Struts2的国际化

    1.概述 把在无需改写源代码即可让开发出来的应用程序能够支持多种语言和数据格式的技术称为国际化. 与国际化对应的是本地化, 指让一个具备国际化支持的应用程序支持某个特定的地区 Struts2国际化是建 ...

  8. curl命令的基本用法

    我们知道在linux环境下,可以调用curl下载网页. 但curl有些高级的应用,只需要几行命令行,可能比你写多行php.python.C++的程序要快些. 下面从问题驱动的角度来谈谈curl的用法 ...

  9. HDU 3687 National Day Parade (暴力)

    题意:给定 n 个人,在 n 列,问你移动最少的距离,使得他们形成一个n*n的矩阵. 析:这个题本来是要找中位数的,但是有特殊情况,所以改成暴力了,时间也很短,就是从第一个能够放左角的位置开始找,取最 ...

  10. mahout算法源码分析之Itembased Collaborative Filtering(二)RowSimilarityJob

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 本篇开始之前先来验证前篇blog的分析结果,编写下面的测试文件来进行对上篇三个job的输出进行读取: p ...