转自利用牛顿迭代法自己写平方根函数sqrt

给定一个正数a,不用库函数求其平方根。

设其平方根为x,则有x2=a,即x2-a=0。设函数f(x)= x2-a,则可得图示红色的函数曲线。在曲线上任取一点(x0,f(x0)),其中x0≠0那么曲线上该点的切线方程为

     (1-1)

求该切线与x轴的交点得

     (1-2)

因为1-2式中x0作为分母,所以在之前限定了一下初始值不要选0。那么得到的这个与x轴的交点其实是最终要求得的x的一次逼近,我们再以这个x基准继续迭代就可以求得更逼近的x,至于逼近到什么时候才算完,这个取决于你自己设定的精度。整个过程的迭代只需要几步就可以求得最终的结果。

代码如下:

  1. double NewtonMethod(double fToBeSqrted)
  2. {
  3. double x = 1.0;
  4. while(abs(x*x-fToBeSqrted) > 1e-5)
  5. {
  6. x = (x+fToBeSqrted/x)/2;
  7. }
  8. return x;
  9. }

当然,从图中可以看出,当你所取的初始值的横坐标在红色曲线与x轴交点右边,即比最终的结果大时,比如选初始值x=a,我们可以将while语句里面的abs(x*x-fToBeSqrted)直接换成fToBeSqrted -x*x,这样可以省去abs的运算。当然这不能确保效率的提升,因为初始值的选取直接影响了迭代的次数。

牛顿迭代法实现平方根函数sqrt的更多相关文章

  1. 【经典面试题】实现平方根函数sqrt

    本文将从一道经典的面试题说起:实现平方根函数,不得调用其它库函数. 函数原型声明例如以下: double Sqrt(double A); 二分法 二分法的概念 求,等价于求方程的非负根(解).求解方程 ...

  2. sql server 平方根函数SQRT(x)

    --SQRT(x)返回非负数x的二次方根 示例:select  SQRT(9), SQRT(36); 结果:3    6

  3. 用牛顿-拉弗森法定义平方根函数(Newton-Raphson method Square Root Python)

    牛顿法(Newton’s method)又称为牛顿-拉弗森法(Newton-Raphson method),是一种近似求解实数方程式的方法.(注:Joseph Raphson在1690年出版的< ...

  4. 用二分法定义平方根函数(Bisection method Square Root Python)

    Python里面有内置(Built-in)的平方根函数:sqrt(),可以方便计算正数的平方根.那么,如果要自己定义一个sqrt函数,该怎么解决呢? 解决思路:  1. 大于等于1的正数n的方根,范围 ...

  5. 牛顿迭代法求n方根

    一.简单推导 二.使用 借助上述公式,理论上可以求任意次方根,假设要求a(假设非负)的n次方根,则有xn=a,令f(x)=xn-a,则只需求f(x)=0时x的值即可.由上述简单推导知,当f(x)=0时 ...

  6. 牛顿迭代法(Newton's Method)

    牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.但是,这一方法在牛顿生前并未公开发表. 牛顿法的作用是使用迭代的方法来求解函数方程的根. ...

  7. sqrt()平方根计算函数的实现2——牛顿迭代法

    牛顿迭代法: 牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特 ...

  8. sqrt (x) 牛顿迭代法

    参考: 0开方 是 0 1的开方式 1 2的开方式 1.4 3.的开方=(1.4+3/1.4)/2 牛顿迭代法:学习自 http://blog.csdn.net/youwuwei2012/articl ...

  9. 141. Sqrt(x)【牛顿迭代法求平方根 by java】

    Description Implement int sqrt(int x). Compute and return the square root of x. Example sqrt(3) = 1 ...

随机推荐

  1. JCrop+ajaxUpload 图像切割上传

    先看效果 需要的文件下载 链接:http://pan.baidu.com/s/1b8SI6M 密码:59ct 页面代码 里面用户的uuid是写死的test <%@ page language=& ...

  2. 从malloc中窥探Linux内存分配策略

        malloc函数是C/C++中常用内存分配库函数,本篇文章将以Linux平台上的malloc为剖析对象,深入了解分配一块内存的旅程. malloc入门      使用malloc,需要包含头文 ...

  3. 【风马一族_C】进制转化

    #include "stdio.h" #include "Math.h" #define number 50 //设置数组的长度 int num10; //十进 ...

  4. DEDECMS中,会员中心的常用知识

    会员中心 引入了member/config.php,即可用$cfg_ml->fields['face'].$cfg_ml->fields['spacesta']等

  5. PHP 如何判断当前用户已在别处登录

    出处:http://bbs.lampbrother.net/read-htm-tid-121909-ds-1.html#tpc 主要思路:1.登录时,将用户的SessionID记录下来2.验证登录时, ...

  6. 基于BT协议的文件分发系统

    基于BT协议的文件分发系统构成:    1.一个Web服务器:保存着种子文件    2.一个种子文件:保存共享文件的一些信息(文件名,文件大小    ,Tracker服务器地址,torrent为后缀) ...

  7. Visual Studio 2012 使用免费的Team Foundation Service

    VS2012提供了在线的TFS服务,免费支持五人小团队,收费情况尚未确定,下面本文演示如何申请和连接在线TFS 服务器. 一.申请TFS服务 首先,打开VS2012,看看是否有团队资源管理器,如果没有 ...

  8. Silverlight C#动态设置样式

    1.从页面资源中获取样式并应用 btnTest.Style = (Style)this.Resources["BigButtonStyle"] 2.从项目中单独分开的资源字典文件( ...

  9. WebApp遇到的一些坑

    一.关于js 1. 引用zepto.js时,借用插件swipe时,写的滑动加载,在ios上可以实行滑动加载数据,但是在安卓上,就是不能滑动: 注: 在使用插件的时候,要先注意其兼容性问题. 2. 用j ...

  10. [大牛翻译系列]Hadoop(21)附录D.1 优化后的重分区框架

    附录D.1 优化后的重分区框架 Hadoop社区连接包需要将每个键的所有值都读取到内存中.如何才能在reduce端的连接减少内存开销呢?本文提供的优化中,只需要缓存较小的数据集,然后在连接中遍历较大数 ...