Let $A$ be a nilpotent operator. Show how to obtain, from aJordan basis for $A$, aJordan basis of $\wedge^2A$.

Solution. Since $A$ is nilpotent, each eigenvalue of $A$ is zero, and thus there exists an basis $e_1,\cdot,e_n$ of $\scrH$ such that $$\bex A(e_1,\cdots,e_n)=(e_1,\cdots,e_n) \sex{\ba{cccc} 0_s&&&\\ &J_1&&\\ &&\ddots&\\ &&&J_t \ea},\quad J_{i}=\sex{\ba{cccc} 0&1&&\\ &\ddots&\ddots&\\ &&\ddots&1\\ &&&0 \ea}_{n_i\times n_i} \eex$$ with $$\bex s+\sum_{i=1}^t n_i=n. \eex$$ Hence $Ae_i=0$ for $$\bex i\in S=\sed{1\leq i\leq s+1, s+\sum_{i=1}^jn_i+1,\ j=1,\cdots,t-1}, \eex$$ and $Ae_k=0$ for $$\bex k\in T=\cup_{j=1}^t T_j,\quad T_j=\sed{s+\sum_{i=1}^{j-1}n_i+2\leq k\leq s+\sum_{i=1}^j n_i+2}. \eex$$ Thus $$\bex k\neq j,\ k,j\in T\lra 0\neq \wedge^2A(e_k\wedge e_l)=e_{k-1}\wedge e_{l-1}. \eex$$ Hence $\wedge^2 A$ has a Jordan basis $$\bex e_i\wedge e_j;(i\in S,i<j\leq n) \eex$$ $$\bex e_k\wedge e_{k+1};\quad\sex{k\in T}; \eex$$ $$\bex e_k\wedge e_{k+2};\quad\sex{k\in T}; \eex$$ $$\bex \cdots,\quad e_{s+2}\wedge e_n. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.6的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 【WS-Federation】到底有多少公司在用WS-Federation

    到底有多少公司在用WS-Federation? sso先调用一个登录接口 获取一个token 然后再调用各种业务接口 如果是ssl token 直接暴露就行了 没有ssl 最好每次取一个token, ...

  2. iOS开发学习路线图

    很多初学iOS开发的人会经常问:“我想学iOS应该从何入手呢?”.作为一个做了2年多各种iOS开发的程序员,只想写写自己的一些心得体会,好和体验与不好的体验.写的不好,请多包涵.希望能起到抛砖引玉的作 ...

  3. [译] ASP.NET 生命周期 – ASP.NET 应用生命周期(一)

    概述 ASP.NET 平台定义了两个非常重要的生命周期.第一个是 应用生命周期  (application life cycle),用来追踪应用从启动的那一刻到终止的那一刻.另一个就是 请求生命周期 ...

  4. EXTJS 资料 Ext.Ajax.request 获取返回数据

    下面是一个登陆页面调用的EXTJS login function,通过 url: '/UI/HttpHandlerData/Login/Login.ashx',获取返回登陆账户和密码! Ext.onR ...

  5. javascript高级编程笔记06(面相对象2)

    1)  构造函数模式 es中的构造函数可以用来创建特定类型的对象,像Object和Array这样的原生构造函数,在运行时会自动出现在执行环境中,此外,也可以创建自定义的构造函数,从而定义自定义对象类型 ...

  6. SC命令详解

    我们知道在MStools SDK,也就是在Resource Kit有一个很少有人知道的命令行软件,SC.exe,这个软件向所有的Windows NT和Windows 2000要求控制他们的API函数. ...

  7. 【转】代码控制UI,View

    [转]Android 步步为营 第5营 代码控制UI,View   http://www.cnblogs.com/vivid-stanley/archive/2012/08/22/2651399.ht ...

  8. PAT-乙级-1043. 输出PATest(20)

    1043. 输出PATest(20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 给定一个长度不超过10000 ...

  9. CSRF攻击原理解析与对策研究

    1.引言       跨站点请求伪造(Cross—Site Request Forgery).以下简称CSRF.是一种广泛存在的网站漏洞.Gmail.YouTube等著名网站都有过CSRF漏洞.甚至包 ...

  10. 深入浅出ShellExecute

    Q: 如何打开一个应用程序? ShellExecute(this->m_hWnd,"open","calc.exe",""," ...