数的节点

 package com.ydp.tree.AVLTree;
public class Node{
private int data = 0;
private Node lchild = null;
private Node rchild = null;
private Node parent = null; public Node(){};
public Node(int data){
this.data = data;
}
public Node(int data,Node parent){
this.data = data;
this.parent = parent;
} public boolean hasLChild(){
return lchild != null;
} public boolean hasRChild(){
return rchild != null;
}
//当前节点树的深度
public int getTreeDepth(){
return getTreeDepth(this);
}
//指定节点树的深度
protected int getTreeDepth(Node node){
int depth = 0;
if(node != null){
int ldepth = getTreeDepth(node.getLchild());
int rdepth = getTreeDepth(node.getRchild());
depth =1 + (ldepth>rdepth?ldepth:rdepth);
}
return depth;
} public int getData() {
return data;
}
public void setData(int data) {
this.data = data;
}
public Node getLchild() {
return lchild;
}
public void setLchild(Node lchild) {
this.lchild = lchild;
}
public Node getRchild() {
return rchild;
}
public void setRchild(Node rchild) {
this.rchild = rchild;
}
public Node getParent() {
return parent;
}
public void setParent(Node parent) {
this.parent = parent;
} public boolean isLChild(){ return this.parent.hasLChild()?this.parent.getLchild().getData()==this.data:false;
} public boolean equals(Node node){
return this.data == node.getData();
} }

平衡二叉树的实现

 package com.ydp.tree.AVLTree;

 import java.util.Stack;

 public class AVLTree {

     Node root = null;

     public static void main(String[] args) {
AVLTree tree = new AVLTree();
tree.insert(50);
tree.insert(40);
tree.insert(30);
tree.print(); tree = new AVLTree();
tree.insert(50);
tree.insert(40);
tree.insert(60);
tree.insert(30);
tree.insert(45);
tree.insert(20);
tree.print(); tree = new AVLTree();
tree.insert(50);
tree.insert(60);
tree.insert(70);
tree.print(); tree = new AVLTree();
tree.insert(50);
tree.insert(40);
tree.insert(60);
tree.insert(55);
tree.insert(70);
tree.insert(80);
tree.print(); tree = new AVLTree();
tree.insert(50);
tree.insert(40);
tree.insert(45);
tree.print(); tree = new AVLTree();
tree.insert(50);
tree.insert(40);
tree.insert(60);
tree.insert(30);
tree.insert(45);
tree.insert(47);
tree.print(); tree = new AVLTree();
tree.insert(50);
tree.insert(60);
tree.insert(55);
tree.print(); tree = new AVLTree();
tree.insert(50);
tree.insert(40);
tree.insert(55);
tree.insert(53);
tree.insert(60);
tree.insert(70);
tree.print(); } public void print(){
System.out.println("树的深度:"+this.getRoot().getTreeDepth());
this.preOrder();
System.out.println();
this.midOrder();
System.out.println("\n");
} //插入节点数据
public void insert(int data){
if(this.root == null){
this.root = new Node(data);
}else{
insert(data,this.root);
}
}
//递归插入,将数据插入到合适的位置
protected void insert(int data,Node node){
if(data>node.getData()){
if(node.hasRChild()){
insert(data,node.getRchild());
}else{
node.setRchild(new Node(data,node));
}
if(getTreeDepth(node.getRchild())-getTreeDepth(node.getLchild())==2){
if(data>node.getRchild().getData()){
leftRotate(node); }else{
rightLeftRotate(node);
}
} }else if(data<node.getData()){
if(node.hasLChild()){
insert(data,node.getLchild());
}else{
node.setLchild(new Node(data,node));
}
if(getTreeDepth(node.getLchild())-getTreeDepth(node.getRchild())==2){
if(data<node.getLchild().getData()){
rightRotate(node);
}else{
leftRightRotate(node); }
} }
} public Node getRoot() {
return root;
} public void setRoot(Node root) {
this.root = root;
} //顺时针旋转
public void rightRotate(Node node){
System.out.println("顺时针:"+node.getData());
Node tmp = node.getLchild();
if(node.getParent() == null){
this.root=node.getLchild();
}else{
if(node.isLChild()){
node.getParent().setLchild(tmp);
}else{
node.getParent().setRchild(tmp);
}
}
tmp.setParent(node.getParent());
node.setLchild(tmp.getRchild());
node.setParent(tmp);
tmp.setRchild(node);
}
//先顺后逆时针
public void rightLeftRotate(Node node){
System.out.println("先顺后逆时针:"+node.getData());
rightRotate(node.getRchild());
leftRotate(node);
} //逆时针
public void leftRotate(Node node){
System.out.println("逆时针:"+node.getData()); Node tmp = node.getRchild();
if(node.getParent() == null){
this.root=node.getRchild();
}else{
if(node.isLChild()){
node.getParent().setLchild(tmp);
}else{
node.getParent().setRchild(tmp);
} }
tmp.setParent(node.getParent());
node.setRchild(tmp.getLchild());
node.setParent(tmp);
tmp.setLchild(node); } //逆时针
public void leftRightRotate(Node node){
System.out.println("先逆后顺时针:"+node.getData());
leftRotate(node.getLchild());
rightRotate(node);
} //先序遍历
public void preOrder(){
Stack<Node> stack = new Stack<Node>();
Node node = root;
while(node != null || !stack.empty()){
while(node != null){
System.out.print(node.getData()+" ");
stack.push(node);
node = node.getLchild();
}
node = stack.pop();
node = node.getRchild();
}
} //中序遍历
public void midOrder(){
Stack<Node> stack = new Stack<Node>();
Node node = root;
while(node != null || !stack.empty()){
while(node != null){
stack.push(node);
node = node.getLchild();
}
node = stack.pop();
System.out.print(node.getData()+" ");
node = node.getRchild();
}
} protected int getTreeDepth(Node node){
int depth = 0;
if(node != null){
int ldepth = getTreeDepth(node.getLchild());
int rdepth = getTreeDepth(node.getRchild());
depth =1 + (ldepth>rdepth?ldepth:rdepth);
}
return depth;
}
}

平衡二叉树(AVL)java实现的更多相关文章

  1. 平衡二叉树(AVL)的理解和实现(Java)

    AVL的定义 平衡二叉树:是一种特殊的二叉排序树,其中每一个节点的左子树和右子树的高度差至多等于1.从平衡二叉树的名字中可以看出来,它是一种高度平衡的二叉排序树.那么什么叫做高度平衡呢?意思就是要么它 ...

  2. Java 树结构实际应用 四(平衡二叉树/AVL树)

    平衡二叉树(AVL 树) 1 看一个案例(说明二叉排序树可能的问题) 给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在.  左边 BST 存在的问题分析: ...

  3. 数据结构与算法--从平衡二叉树(AVL)到红黑树

    数据结构与算法--从平衡二叉树(AVL)到红黑树 上节学习了二叉查找树.算法的性能取决于树的形状,而树的形状取决于插入键的顺序.在最好的情况下,n个结点的树是完全平衡的,如下图"最好情况&q ...

  4. 二叉查找树(BST)、平衡二叉树(AVL树)(只有插入说明)

    二叉查找树(BST).平衡二叉树(AVL树)(只有插入说明) 二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点, ...

  5. 平衡二叉树AVL - 插入节点后旋转方法分析

    平衡二叉树 AVL( 发明者为Adel'son-Vel'skii 和 Landis)是一种二叉排序树,其中每一个节点的左子树和右子树的高度差至多等于1. 首先我们知道,当插入一个节点,从此插入点到树根 ...

  6. 二叉查找树、平衡二叉树(AVL)、B+树、联合索引

    1. [定义] 二叉排序树(二拆查找树)中,左子树都比节点小,右子树都比节点大,递归定义. [性能] 二叉排序树的性能取决于二叉树的层数 最好的情况是 O(logn),存在于完全二叉排序树情况下,其访 ...

  7. java平衡二叉树AVL数

    平衡二叉树(Balanced Binary Tree)具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树 右旋:在插入二叉树的时候,根节点的右侧高 ...

  8. 【数据结构】平衡二叉树—AVL树

    (百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增 ...

  9. 平衡二叉树AVL删除

    平衡二叉树的插入过程:http://www.cnblogs.com/hujunzheng/p/4665451.html 对于二叉平衡树的删除采用的是二叉排序树删除的思路: 假设被删结点是*p,其双亲是 ...

  10. 平衡二叉树AVL插入

    平衡二叉树(Balancedbinary tree)是由阿德尔森-维尔斯和兰迪斯(Adelson-Velskiiand Landis)于1962年首先提出的,所以又称为AVL树. 定义:平衡二叉树或为 ...

随机推荐

  1. android入门系列- TextView EditText Button ImageView 的简单应用

    第一篇原创,其实自己就是一菜鸟,简单分享点基本知识吧.希望能有所帮助吧. TextView EditText Button ImageView 这几个控件可能是Android开发中最常用.最基本的几个 ...

  2. servlet的doPost 和doGet和web文件结构

    doPost和doGet分别由 tomcat自己来决定调用post 还是get 方式查询 get:url有少量的参数信息,一般用到查询那里 (像百度.. post一般用来提交大文件数据(二进制数据 d ...

  3. 平衡搜索树(二) Rb 红黑树

    Rb树简介 红黑树是一棵二叉搜索树,它在每个节点上增加了一个存储位来表示节点的颜色,可以是Red或Black.通过对任何一条从根到叶子简单 路径上的颜色来约束,红黑树保证最长路径不超过最短路径的两倍, ...

  4. chapter1-开始(1)

    C++学习小记 之前“看”过C++,但是纯粹只是为了应付考试.现在想重新学习,久仰<C++ primer>大名,书之厚令我生畏,好记性不如烂笔头,遂以博客形式笔记之. 本人编程菜鸟一枚,当 ...

  5. Win异常: 除了chrome浏览器外,所有安装的软件都连不上网

    经查找资料,是LSP被篡改,恢复后使用正常. 百度百科  LSP: Layered Service Provider, 即分层服务提程序,Winsock 作为应用程序的 Windows 的网络套接字工 ...

  6. socket 编程基础

    一.Socket简介 Socket是进程通讯的一种方式,即调用这个网络库的一些API函数实现分布在不同主机的相关进程之间的数据交换. 几个定义: (1)IP地址:即依照TCP/IP协议分配给本地主机的 ...

  7. JavaScript 获取当月天数

    getDate() 方法可返回月份的某一天.取值范围是1~31 如果是0的话,就返回最后一天.这样就能取得当月的天数了 比如获取16年2月份的天数 var day = new Date(2016,2, ...

  8. XAMPP 使用教程

        XAMPP 是一个把Apache网页服务器与PHP.Perl及MySQL集合在一起的安装包,允许用户可以在自己的电脑上轻易的建立网页服务器.使用 XAMPP 您可以轻松的在本机调试您的 PHP ...

  9. MySql数据库2【常用命令行】

    (一) 连接MYSQL: 格式: mysql -h主机地址 -u用户名 -p用户密码 1.连接到本机上的MYSQL 进入mysql安装目录下的bin目录下,再键入命令mysql -uroot -p,回 ...

  10. webkit report

    %for main_o in objects: <% print main_o.sale_announcement_ids %> %for o in announcement_pool.b ...