Codeforces 296C Greg and Array
数据结构题。个人认为是比较好的数据结构题。题意:给定一个长度为n的数组a,然后给定m个操作序列,每个操作:l, r, x将区间[l, r]内的元素都增加a,然后有k个查询,查询形式是对于操作序列x,y是将第x个操作到第y个操作执行一遍。然后求最后的数组的元素值。
1.线段树解法:维护两棵线段树,一棵用于维护执行的操作序列的执行次数,一棵用于维护数组a的值。复杂度O(nlogn)。
2.扫描区间。对于数组和操作序列分别维护一个数组lx[],ly[]。ly[i]表示区间[i, m]中每个操作执行的次数,lx[i]表示区间[i, n]中每个数的增量的值。O(n)的复杂度。
#include <stdio.h>
#include <string.h>
#define maxn 100005
#define lson(c) (c<<1)
#define rson(c) (c<<1|1)
#define mid(x, y) ((x+y)>>1)
typedef long long LL; struct Tree{
LL f[maxn*];
Tree(){
memset(f, , sizeof(f));
}
void init(){
memset(f, , sizeof(f));
}
void push_down(int c){
int l = lson(c), r = rson(c);
f[l] += f[c];
f[r] += f[c];
f[c] = ;
}
void update(int l, int r, int c, int lp, int rp, LL d){
if(lp <= l && r <= rp){
f[c] += d;
return ;
}
push_down(c);
int m = mid(l, r);
if(rp <= m) update(l, m, lson(c), lp, rp, d);
else if(lp > m) update(m + , r, rson(c), lp, rp, d);
else{
update(l, m, lson(c), lp, m, d);
update(m+, r, rson(c), m+, rp, d);
}
}
void query(int c, int l, int r, LL a[], int s){
if(l==r){
if(s)
a[l] = a[l]*f[c];
else a[l] = a[l] + f[c];
return ;
}
push_down(c);
int mid = mid(l, r);
query(lson(c), l, mid, a, s);
query(rson(c), mid+, r, a, s);
}
}insTree, arrTree;
LL a[maxn], ind[maxn];
int ls[maxn], rs[maxn]; int main(){
//freopen("test.in", "r", stdin);
for(int n, m, k; scanf("%d%d%d", &n, &m, &k)!=EOF; ){
insTree.init();
arrTree.init();
for(int i = ; i <= n; i ++){
scanf("%I64d", &a[i]);
}
for(int i = ; i <= m; i ++){
scanf("%d %d %I64d", &ls[i], &rs[i], &ind[i]);
}
for(int i = , x, y; i <= k; i ++){
scanf("%d%d", &x, &y);
insTree.update(, m, , x, y, );
}
insTree.query(, , m, ind, );
for(int i = ; i <= m; i ++){
arrTree.update(, n, , ls[i], rs[i], ind[i]);
}
arrTree.query(, , n, a, );
for(int i = ; i <= n; i ++){
printf("%I64d ", a[i]);
}
printf("\n");
}
}
#include <stdio.h>
#include <string.h>
#define maxn 100005
typedef long long LL;
LL a[maxn], ind[maxn];
LL lx[maxn], ly[maxn];
int px[maxn], py[maxn]; int main(){
//freopen("test.in", "r", stdin);
for(int n, m, k; scanf("%d%d%d", &n, &m, &k)!=EOF; ){
memset(lx, , sizeof(lx));
memset(ly, , sizeof(ly));
for(int i = ; i <= n; i ++) scanf("%I64d", &a[i]);
for(int i = ; i <= m; i ++) scanf("%d%d%I64d", &px[i], &py[i], &ind[i]);
for(int i = , x, y; i <= k; i ++){
scanf("%d%d", &x, &y); lx[x] += , lx[y+] -= ;
}
LL s = ;
for(int i = ; i <= m; i ++){
s += lx[i];
ind[i] = ind[i] *s;
}
for(int i = ; i <= m; i ++){
ly[px[i]] += ind[i];
ly[py[i]+] -= ind[i];
}
s = ;
for(int i = ; i <= n; i ++){
s += ly[i];
printf("%I64d ", a[i] + s);
}
printf("\n");
}
return ;
}
Codeforces 296C Greg and Array的更多相关文章
- Codeforces 295A Greg and Array
传送门 A. Greg and Array time limit per test 1.5 seconds memory limit per test 256 megabytes input stan ...
- Greg and Array CodeForces 296C 差分数组
Greg and Array CodeForces 296C 差分数组 题意 是说有n个数,m种操作,这m种操作就是让一段区间内的数增加或则减少,然后有k种控制,这k种控制是说让m种操作中的一段区域内 ...
- Codeforces Round #179 (Div. 1) A. Greg and Array 离线区间修改
A. Greg and Array Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/295/pro ...
- Codeforces 442C Artem and Array(stack+贪婪)
题目连接:Codeforces 442C Artem and Array 题目大意:给出一个数组,每次删除一个数.删除一个数的得分为两边数的最小值,假设左右有一边不存在则算作0分. 问最大得分是多少. ...
- Codeforces Round #504 D. Array Restoration
Codeforces Round #504 D. Array Restoration 题目描述:有一个长度为\(n\)的序列\(a\),有\(q\)次操作,第\(i\)次选择一个区间,将区间里的数全部 ...
- ACM - 最短路 - CodeForces 295B Greg and Graph
CodeForces 295B Greg and Graph 题解 \(Floyd\) 算法是一种基于动态规划的算法,以此题为例介绍最短路算法中的 \(Floyd\) 算法. 我们考虑给定一个图,要找 ...
- G - Greg and Array CodeForces - 296C 差分+线段树
题目大意:输入n,m,k.n个数,m个区间更新标记为1~m.n次操作,每次操作有两个数x,y表示执行第x~y个区间更新. 题解:通过差分来表示某个区间更新操作执行的次数.然后用线段树来更新区间. #i ...
- CodeForces Round #179 (295A) - Greg and Array
题目链接:http://codeforces.com/problemset/problem/295/A 我的做法,两次线段树 #include <cstdio> #include < ...
- CodeForces Round #179 (295A) - Greg and Array 一个线段树做两次用
线段树的区间更新与区间求和...一颗这样的线段树用两次... 先扫描1~k...用线段树统计出每个操作执行的次数... 那么每个操作就变成了 op. l , op.r , op.c= times* ...
随机推荐
- Mysql DOC阅读笔记
Mysql DOC阅读笔记 转自我的Github Speed of SELECT Statements 合理利用索引 隔离调试查询中花费高的部分,例如函数调用是在结果集中的行执行还是全表中的行执行 最 ...
- css3动画使用技巧之——transform-delay为负值时的应用。
<html> <head> <title>css3动画delay为负值时的效果</title> <meta ch ...
- Android Context创建过程
特定的资源或者类构成了Android应用程序的运行上下文环境 PackageManager, ClassLoader, Assert等等 Android应用程序窗口的运行上下文环境是通过Con ...
- Djang DJANGO_SETTINGS_MODULE
在 site-packages\django 新建一个文件 ’settings.py‘ 内容如下: DEBUG = TrueDEFAULT_FROM_EMAIL = 'alangwansui@qq.c ...
- Makefile与shell脚本的区别
引用博客:Makefile与shell脚本区别 在Makefile可以调用shell脚本,但是Makefile和shell脚本是不同的.本文试着归纳一下Makefile和shell脚本的不同. 1.s ...
- sqlserver access 多数据库操作
今天搞了一天的事情, 更新 ACCESS 數據庫 ,要從 SQL SERVER 2008數據庫中 查詢資料.沒找到資料 只能自己做了. 首先查找一下 ,如何 用SQL 語句 select * ...
- SVN - 基础知识
1. 术语 $ svn checkout URL [PATH] ----- 下载服务器所有文件 (clone) 到本地[path] --- 只需一次 $ svn checkout http: ...
- iOS oc 中的闭包
//闭包 NSString* s =@"123"; void (^block)() = ^() { NSLog(@"%@",s); }; block();// ...
- Android之EditText组件学习
一.基础学习 1.Button是TextView的一个子类,所以按钮本身是一个特殊的文本,属性和TextView相似 2.EditText类似html里的input type="text&q ...
- hdu 4454 Stealing a Cake
简单的计算几何: 可以把0-2*pi分成几千份,然后找出最小的: 也可以用三分: #include<cstdio> #include<cmath> #include<al ...