bzoj 3053 HDU 4347 : The Closest M Points  kd树

题目大意:求k维空间内某点的前k近的点。

就是一般的kd树,根据实测发现,kd树的两种建树方式,即按照方差较大的维度分开(建树常数大)或者每一位轮换分割(询问常数大),后者更快也更好些,以后就果断写第二种了。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAXN 510000
#define MAXT MAXN
#define MAXM 6
#define sqr(x) ((qword)(x)*(x))
#define INF 0x3f3f3f3f
typedef long long qword;
int n,m;
struct point
{
int a[MAXM];
qword dis;
void pm()
{
printf("(%d",a[]);
for (int i=;i<m;i++)
printf(",%d",a[i]);
printf(")");
}
void pm2()
{
for (int i=;i<m-;i++)
printf("%d ",a[i]);
printf("%d\n",a[m-]);
}
}pl[MAXN];
bool cmp_0(const point &p1,const point &p2){
return p1.a[]<p2.a[];
}
bool cmp_1(const point &p1,const point &p2){
return p1.a[]<p2.a[];
}
bool cmp_2(const point &p1,const point &p2){
return p1.a[]<p2.a[];
}
bool cmp_3(const point &p1,const point &p2){
return p1.a[]<p2.a[];
}
bool cmp_4(const point &p1,const point &p2){
return p1.a[]<p2.a[];
}
bool cmp_d(const point &p1,const point &p2){
return p1.dis<p2.dis;
}
struct kdt_node
{
int a[MAXM];
int dd,mxp[MAXM],mnp[MAXM];
int ch[];
int ptr;
}kdt[MAXT];
qword get_dis(point &pt,kdt_node &pn)
{
qword ret=;
for (int j=;j<m;j++)
if (pt.a[j]<pn.mnp[j] || pt.a[j]>pn.mxp[j])
ret+=min(sqr(pt.a[j]-pn.mxp[j]),sqr(pt.a[j]-pn.mnp[j]));
return ret;
}
qword get_dis(point &p1,point &p2)
{
qword ret=;
for (int i=;i<m;i++)
ret+=sqr(p1.a[i]-p2.a[i]);
return ret;
}
int topt=;
void Build_kdt(int &now,int l,int r,int d)
{
if (l>r)return;
now=++topt;
int i,j;
for (j=;j<m;j++)kdt[now].mxp[j]=-INF,kdt[now].mnp[j]=INF;
for (i=l;i<=r;i++)
for (j=;j<m;j++)
{
kdt[now].mxp[j]=max(kdt[now].mxp[j],pl[i].a[j]);
kdt[now].mnp[j]=min(kdt[now].mnp[j],pl[i].a[j]);
}
/* double ave[MAXM];
double sqv[MAXM];
memset(ave,0,sizeof(ave));
memset(sqv,0,sizeof(sqv));
for (i=l;i<=r;i++)
for (j=0;j<m;j++)
ave[j]+=pl[i].a[j];
for (j=0;j<m;j++)
ave[j]/=(r-l+1);
for (i=l;i<=r;i++)
for (j=0;j<m;j++)
sqv[j]+=sqr(pl[i].a[j]-ave[j]);
kdt[now].dd=0;
for (j=0;j<m;j++)
if (sqv[j]>sqv[kdt[now].dd])
kdt[now].dd=j;*/
kdt[now].dd=d;
switch (kdt[now].dd)
{
case :nth_element(&pl[l],&pl[(l+r)>>],&pl[r+],cmp_0);break;
case :nth_element(&pl[l],&pl[(l+r)>>],&pl[r+],cmp_1);break;
case :nth_element(&pl[l],&pl[(l+r)>>],&pl[r+],cmp_2);break;
case :nth_element(&pl[l],&pl[(l+r)>>],&pl[r+],cmp_3);break;
case :nth_element(&pl[l],&pl[(l+r)>>],&pl[r+],cmp_4);break;
}
kdt[now].ptr=(l+r)>>;
Build_kdt(kdt[now].ch[],l,((r+l)>>)-,(d+)%m);
Build_kdt(kdt[now].ch[],((r+l)>>)+,r,(d+)%m);
}
point h[MAXN];
int atot;
int toph=;
void search_point(int now,point &pt)
{
if (!now)return ;
qword cdis=get_dis(pt,pl[kdt[now].ptr]);
if (toph<atot || cdis<h[].dis)
{
if (toph==atot)pop_heap(&h[],&h[toph--],cmp_d);
h[toph]=pl[kdt[now].ptr];
h[toph].dis=cdis;
push_heap(&h[],&h[++toph],cmp_d);
}
int t;
if (get_dis(pt,kdt[kdt[now].ch[]]) < get_dis(pt,kdt[kdt[now].ch[]]))
t=;
else
t=;
search_point(kdt[now].ch[t],pt);
if (toph<atot || get_dis(pt,kdt[kdt[now].ch[t^]]) < h[].dis)
{
search_point(kdt[now].ch[t^],pt);
}
}
int main()
{
// freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
int i,j,k,x,y,z;
int root=;
while (~scanf("%d%d",&n,&m))
{
for (i=;i<n;i++)
for (j=;j<m;j++)
scanf("%d",&pl[i].a[j]);
Build_kdt(root,,n-,);
int q;
scanf("%d",&q);
point pt;
for (i=;i<q;i++)
{
for (j=;j<m;j++)
scanf("%d",&pt.a[j]);
scanf("%d",&atot);
search_point(root,pt);
printf("the closest %d points are:\n",atot);
while (toph)
{
pop_heap(&h[],&h[toph--],cmp_d);
}
for (j=;j<atot;j++)
h[j].pm2();
}
}
}

bzoj 3053 HDU 4347 : The Closest M Points kd树的更多相关文章

  1. hdu 4347 The Closest M Points (kd树)

    版权声明:本文为博主原创文章,未经博主允许不得转载. hdu 4347 题意: 求k维空间中离所给点最近的m个点,并按顺序输出  . 解法: kd树模板题 . 不懂kd树的可以先看看这个 . 不多说, ...

  2. HDU 4347 - The Closest M Points - [KDTree模板题]

    本文参考: https://www.cnblogs.com/GerynOhenz/p/8727415.html kuangbin的ACM模板(新) 题目链接:http://acm.hdu.edu.cn ...

  3. hdu 4347 The Closest M Points(KD树)

    Problem - 4347 一道KNN的题.直接用kd树加上一个暴力更新就撸过去了.写的时候有一个错误就是搜索一边子树的时候返回有当前层数会被改变了,然后就直接判断搜索另一边子树,搞到wa了半天. ...

  4. 数据结构(KD树):HDU 4347 The Closest M Points

    The Closest M Points Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 98304/98304 K (Java/Ot ...

  5. HDU 4347 The Closest M Points (kdTree)

    赤果果的kdTree. 学习传送门:http://www.cnblogs.com/v-July-v/archive/2012/11/20/3125419.html 其实就是二叉树的变形 #includ ...

  6. BZOJ 3053: The Closest M Points(K-D Tree)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1235  Solved: 418[Submit][Status][Discuss] Descripti ...

  7. 【HDOJ】4347 The Closest M Points

    居然是KD解. /* 4347 */ #include <iostream> #include <sstream> #include <string> #inclu ...

  8. hud 4347 The Closest M Points(KD-Tree)

    传送门 解题思路 \(KD-Tree\)模板题,\(KD-Tree\)解决的是多维问题,它是一个可以储存\(K\)维数据的二叉树,每一层都被一维所分割.它的插入删除复杂度为\(log^2 n\),它查 ...

  9. [hdu4347]The Closest M Points(线段树形式kd-tree)

    解题关键:kdtree模板题,距离某点最近的m个点. #include<cstdio> #include<cstring> #include<algorithm> ...

随机推荐

  1. 可拖拽重排的CollectionView

    来源:wazrx 链接:http://www.jianshu.com/p/8f0153ce17f9 写在前面 这段时间都在忙新项目的事儿,没有时间倒腾,这两天闲下来,想着一直没有细细的研究Collec ...

  2. hdu1047(Java)大数相加

    题目大意:输入n组数据,每组数据中又有若干长度不大于100的整数,以0结束每组数据的输入,求每组中数据之和.每两组数据输入之间有一行空格,输出也是如此. Integer Inquiry Time Li ...

  3. Java基础知识强化之IO流笔记51:IO流练习之 键盘录入学生信息按照总分排序写入文本文件中的案例

    1.  键盘录入学生信息(姓名,语文成绩,数学成绩,英语成绩),按照总分排序写入文本文件中 分析:   A:创建学生类   B:创建集合对象      TreeSet<Student>   ...

  4. android的activity的跳转

    1.无参数的跳转 先在layout下建立一个factivity.xml,在里面添加2个Button按钮和一个TextView,并添加属性 , 然后建立以个sactivity.xml文件, 在src下建 ...

  5. jQuery多图上传Uploadify插件使用及传参详解

    因为工作需要,这两天接触到了Uploadify插件,由于是第一次用,花了我近一天的时间.下面我把我在用这个插件过程详细的分享出来,也让自己巩固一下,也希望能帮助到你. 所需文件: jquery-1.8 ...

  6. Java分布式处理技术(RMI,JDNI)

    http://hedaoyuan.blog.51cto.com/4639772/813702 1.1 RMI的基本概念 1.1.1 什么是RMI RMI(Remote Method Invocatio ...

  7. 经历:easyui的datagrid没有数据滚动条的显示

    今天,一个用户提出一个这样的问题,"查询不到结果时,为什么我看不到后面的标题呢?" 最初,我听到这个问题时,第一反应是:查出来数据不就有滚动条了吗,干嘛非要较真呢? 不过,后来想想 ...

  8. C++ 变量转换

    atoi,atol,strtod,strtol,strtoul实现类型转换2006-02-13 版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明http://ivanvic.blogb ...

  9. .NET 设计模式之单例模式(一)

    1.简单解释:在创建对象时,无论创建多少次,在堆空间上只会申请一次内存空间. 2.例子(1): public class Singleton{ private static Singleton _si ...

  10. 基于C#的IBM消息队列操作客户端

    背景: 做XX项目需要把交易的消息推送给YY系统,技术选型MQ 另:选用MQ原因是为了防止YY系统宕机,无法接受收消息 实现 1.安装IBM WebSphere MQ客户端 2.引用amqmdnet. ...