bzoj 3053 HDU 4347 : The Closest M Points  kd树

题目大意:求k维空间内某点的前k近的点。

就是一般的kd树,根据实测发现,kd树的两种建树方式,即按照方差较大的维度分开(建树常数大)或者每一位轮换分割(询问常数大),后者更快也更好些,以后就果断写第二种了。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAXN 510000
#define MAXT MAXN
#define MAXM 6
#define sqr(x) ((qword)(x)*(x))
#define INF 0x3f3f3f3f
typedef long long qword;
int n,m;
struct point
{
int a[MAXM];
qword dis;
void pm()
{
printf("(%d",a[]);
for (int i=;i<m;i++)
printf(",%d",a[i]);
printf(")");
}
void pm2()
{
for (int i=;i<m-;i++)
printf("%d ",a[i]);
printf("%d\n",a[m-]);
}
}pl[MAXN];
bool cmp_0(const point &p1,const point &p2){
return p1.a[]<p2.a[];
}
bool cmp_1(const point &p1,const point &p2){
return p1.a[]<p2.a[];
}
bool cmp_2(const point &p1,const point &p2){
return p1.a[]<p2.a[];
}
bool cmp_3(const point &p1,const point &p2){
return p1.a[]<p2.a[];
}
bool cmp_4(const point &p1,const point &p2){
return p1.a[]<p2.a[];
}
bool cmp_d(const point &p1,const point &p2){
return p1.dis<p2.dis;
}
struct kdt_node
{
int a[MAXM];
int dd,mxp[MAXM],mnp[MAXM];
int ch[];
int ptr;
}kdt[MAXT];
qword get_dis(point &pt,kdt_node &pn)
{
qword ret=;
for (int j=;j<m;j++)
if (pt.a[j]<pn.mnp[j] || pt.a[j]>pn.mxp[j])
ret+=min(sqr(pt.a[j]-pn.mxp[j]),sqr(pt.a[j]-pn.mnp[j]));
return ret;
}
qword get_dis(point &p1,point &p2)
{
qword ret=;
for (int i=;i<m;i++)
ret+=sqr(p1.a[i]-p2.a[i]);
return ret;
}
int topt=;
void Build_kdt(int &now,int l,int r,int d)
{
if (l>r)return;
now=++topt;
int i,j;
for (j=;j<m;j++)kdt[now].mxp[j]=-INF,kdt[now].mnp[j]=INF;
for (i=l;i<=r;i++)
for (j=;j<m;j++)
{
kdt[now].mxp[j]=max(kdt[now].mxp[j],pl[i].a[j]);
kdt[now].mnp[j]=min(kdt[now].mnp[j],pl[i].a[j]);
}
/* double ave[MAXM];
double sqv[MAXM];
memset(ave,0,sizeof(ave));
memset(sqv,0,sizeof(sqv));
for (i=l;i<=r;i++)
for (j=0;j<m;j++)
ave[j]+=pl[i].a[j];
for (j=0;j<m;j++)
ave[j]/=(r-l+1);
for (i=l;i<=r;i++)
for (j=0;j<m;j++)
sqv[j]+=sqr(pl[i].a[j]-ave[j]);
kdt[now].dd=0;
for (j=0;j<m;j++)
if (sqv[j]>sqv[kdt[now].dd])
kdt[now].dd=j;*/
kdt[now].dd=d;
switch (kdt[now].dd)
{
case :nth_element(&pl[l],&pl[(l+r)>>],&pl[r+],cmp_0);break;
case :nth_element(&pl[l],&pl[(l+r)>>],&pl[r+],cmp_1);break;
case :nth_element(&pl[l],&pl[(l+r)>>],&pl[r+],cmp_2);break;
case :nth_element(&pl[l],&pl[(l+r)>>],&pl[r+],cmp_3);break;
case :nth_element(&pl[l],&pl[(l+r)>>],&pl[r+],cmp_4);break;
}
kdt[now].ptr=(l+r)>>;
Build_kdt(kdt[now].ch[],l,((r+l)>>)-,(d+)%m);
Build_kdt(kdt[now].ch[],((r+l)>>)+,r,(d+)%m);
}
point h[MAXN];
int atot;
int toph=;
void search_point(int now,point &pt)
{
if (!now)return ;
qword cdis=get_dis(pt,pl[kdt[now].ptr]);
if (toph<atot || cdis<h[].dis)
{
if (toph==atot)pop_heap(&h[],&h[toph--],cmp_d);
h[toph]=pl[kdt[now].ptr];
h[toph].dis=cdis;
push_heap(&h[],&h[++toph],cmp_d);
}
int t;
if (get_dis(pt,kdt[kdt[now].ch[]]) < get_dis(pt,kdt[kdt[now].ch[]]))
t=;
else
t=;
search_point(kdt[now].ch[t],pt);
if (toph<atot || get_dis(pt,kdt[kdt[now].ch[t^]]) < h[].dis)
{
search_point(kdt[now].ch[t^],pt);
}
}
int main()
{
// freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
int i,j,k,x,y,z;
int root=;
while (~scanf("%d%d",&n,&m))
{
for (i=;i<n;i++)
for (j=;j<m;j++)
scanf("%d",&pl[i].a[j]);
Build_kdt(root,,n-,);
int q;
scanf("%d",&q);
point pt;
for (i=;i<q;i++)
{
for (j=;j<m;j++)
scanf("%d",&pt.a[j]);
scanf("%d",&atot);
search_point(root,pt);
printf("the closest %d points are:\n",atot);
while (toph)
{
pop_heap(&h[],&h[toph--],cmp_d);
}
for (j=;j<atot;j++)
h[j].pm2();
}
}
}

bzoj 3053 HDU 4347 : The Closest M Points kd树的更多相关文章

  1. hdu 4347 The Closest M Points (kd树)

    版权声明:本文为博主原创文章,未经博主允许不得转载. hdu 4347 题意: 求k维空间中离所给点最近的m个点,并按顺序输出  . 解法: kd树模板题 . 不懂kd树的可以先看看这个 . 不多说, ...

  2. HDU 4347 - The Closest M Points - [KDTree模板题]

    本文参考: https://www.cnblogs.com/GerynOhenz/p/8727415.html kuangbin的ACM模板(新) 题目链接:http://acm.hdu.edu.cn ...

  3. hdu 4347 The Closest M Points(KD树)

    Problem - 4347 一道KNN的题.直接用kd树加上一个暴力更新就撸过去了.写的时候有一个错误就是搜索一边子树的时候返回有当前层数会被改变了,然后就直接判断搜索另一边子树,搞到wa了半天. ...

  4. 数据结构(KD树):HDU 4347 The Closest M Points

    The Closest M Points Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 98304/98304 K (Java/Ot ...

  5. HDU 4347 The Closest M Points (kdTree)

    赤果果的kdTree. 学习传送门:http://www.cnblogs.com/v-July-v/archive/2012/11/20/3125419.html 其实就是二叉树的变形 #includ ...

  6. BZOJ 3053: The Closest M Points(K-D Tree)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1235  Solved: 418[Submit][Status][Discuss] Descripti ...

  7. 【HDOJ】4347 The Closest M Points

    居然是KD解. /* 4347 */ #include <iostream> #include <sstream> #include <string> #inclu ...

  8. hud 4347 The Closest M Points(KD-Tree)

    传送门 解题思路 \(KD-Tree\)模板题,\(KD-Tree\)解决的是多维问题,它是一个可以储存\(K\)维数据的二叉树,每一层都被一维所分割.它的插入删除复杂度为\(log^2 n\),它查 ...

  9. [hdu4347]The Closest M Points(线段树形式kd-tree)

    解题关键:kdtree模板题,距离某点最近的m个点. #include<cstdio> #include<cstring> #include<algorithm> ...

随机推荐

  1. spring mvc 3.1的自动注入参数遇到的问题

    在网上下载了xheditor作为页面的编辑器,编辑内容后post到后台保存,后台方法用spring mvc的自动注入的方式接收参数. 这种方式在各个浏览器下运行良好,但是在ie11下发现,从word. ...

  2. 常见的IE6兼容以及css兼容

    IE6虽然随着XP系统退出市场在国外基本基本消失,但是在国内依然占据很大的市场份额.政务网站.页游官网等依然要考虑到IE6用户的体验.如果你的网站使用CSS3等“新技术”时,就必须果断放弃IE6的兼容 ...

  3. [ lucene高级 ] 研讨如何进行Lucene的分布式应用

    http://www.cnblogs.com/huangfox/archive/2010/10/15/1852206.html Lucene是个高度优化的倒转索引搜索引擎.它将倒转的索引存储在定制的文 ...

  4. JQ异步调用

    AjaxGet请求方式: <script type="text/javascript"> $.ajax({ type: "GET", dataTyp ...

  5. MVC中实现部分内容异步加载

    MVC中实现部分内容异步加载 action中定义一个得到结果集的方法 public ActionResult GetItemTree(string title, int itemid, int? pa ...

  6. ACM/ICPC ZOJ1006-Do the Untwist 解题代码

    #include <iostream> #include <string> #include <stdlib.h> using namespace std; int ...

  7. Android获取屏幕尺寸大小

    官方API: A structure describing general information about a display, such as its size, density, and fo ...

  8. Oracle的%type和%rowtype

    1 %TYPE说明 为了使一个变量的数据类型与另一个已经定义了的变量(尤其是表的某一列)的数据类型相一致,Oracle提供 了%TYPE定义方式.当被参照的那个变量的数据类型改变了之后,这个新定义的变 ...

  9. iOS 制作发布证书,发布到App Store

    ---恢复内容开始--- 1.登陆 iOS Dev Center 选择进入iOS Provisioning Portal. 2.在 iOS Provisioning Portal中,点击App IDs ...

  10. OpenCV(7)-图像直方图

    直方图定义可参考这里.图像的直方图用来表示图像像素的统计信息,它统计了图像每一个通道(如果是多通道)中,每个像素的个数(比例). 计算直方图 OpenCV提供了直接计算直方图的函数 void calc ...