vijosP1543 极值问题
vijosP1543 极值问题
链接:https://vijos.org/p/1543
【题解】(网上)
从简单情况人手:
设定m=1,将m代人方程②有(n2-n-1)2=1,可求出n=1;
m=2,代人②,有(n2-2n-4)2=1,可求出n=3;
m=3,代人②,有(n2-3n-9)2=1,可求出n=5;
m=4,代人②,有(n2-4n-16)2=1,可知无整数解;
m=5,代人②,有(n2-5n-25)2=1,可求出n=8;
将满足条件的m,n排列在一起,有:1 2 3 5 8…
看到上述数列,熟悉Fibonacci数列的应该有些面熟,于是就可以猜测,m,n是否为Fibonacci数列中相邻的两项,提出这样的猜想之后,就可以再次设定m=8,可求出n正好等于13,可见猜想成立。提出猜想之后,就应该想办法证明这一猜想。事实上,对条件②的等式进行一些数学变换:
(n2-mn-m2)2=[-(n+m)2+2n2+mn]2=[(n+m)2-n(n+m)-n2]2 =[(n')2-m'n'-(m')2]2
其中:n'=m+n,m'=n
由上述数学变换可以得出,若m和n为满足条件的一组解,则m'和n'也是满足条件的一组解。通过上述证明可知,m,n的确是满足Fibonacci数列的相邻两项,即猜想得以证明。再加上题设中要求使得m2+n2的值最大的条件,可知问题的解即为Fibonacci数列中小于k的最大两个相邻数。
由此可见,上述例题的求解方法正是归纳策略一般所要求的三个步骤:从简单情况人手、寻找规律、提出猜想和验证猜想。
【代码】
#include<iostream>
using namespace std; int main() {
long long k,f1,f2,f3,tmp,ans;
cin>>k;
f1=; f2=; f3=;
while(f3<=k) {
tmp=f2+f3;
f1=f2; f2=f3;
f3=tmp;
}
cout<<(long long)(f2*f2+f1*f1);
return ;
}
vijosP1543 极值问题的更多相关文章
- 【极值问题】【CF33C】 Wonderful Randomized Sum
传送门 Description 给你一个数列\(A\),你可以选择任意一个前缀和任意一个后缀,前缀后缀可重合.给他们乘\(-1\).求最大能获得的序列和. Input 第一行是一个数\(n\)代表数列 ...
- 【极值问题】【CF1063B】 Labyrinth
传送门 Description 给你一个\(n~\times~m\)的矩阵,一开始你在第\(r\)行第\(c\)列.你的上下移动不受限制,向左最多移动\(x\)次,向右最多移动\(y\)次.求你最多能 ...
- vijos - P1543极值问题(斐波那契数列 + 公式推导 + python)
P1543极值问题 Accepted 标签:[显示标签] 背景 小铭的数学之旅2. 描写叙述 已知m.n为整数,且满足下列两个条件: ① m.n∈1,2.-,K ② (n^ 2-mn-m^2)^2=1 ...
- 01(a)一元函数_多元函数_无约束极值问题的求解
1. 一元函数的极值问题 (函数光滑) 对于一个一元函数$f(x)$,怎么才能找出它的极值呢? 1.1根据定义:如果存在一点${{x}_{0}}$,在点${{x}_{0}}$的某个领域$U({{x} ...
- 2019.7.9 校内测试 T2 极值问题
这一次是交流测试?边交流边测试(滑稽 极值问题 乍一看这是一道数学题,因为1e9的数据让我暴力的心退却. 数学又不好,不会化简式子嘞,咋办? 不怕,咱会打表找规律.(考场上真的是打表找出了规律,打表打 ...
- E - Rebuild UVALive - 7187 (二次函数极值问题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5531 Problem Description Archaeologists find ruins of ...
- 极值问题(acms)
[问题描述] 已知m.n为整数,且满足下列两个条件: ① m.n∈{1,2,…,k},即1≤m,n≤k,(1≤k≤109). ②(n2-m*n-m2)2=1 你的任务是:编程输入正整数k,求一组满足上 ...
- VIJOS P1543极值问题
已知m.n为整数,且满足下列两个条件:① m.n∈1,2,…,K② (n^ 2-mn-m^2)^2=1编一程序,对给定K,求一组满足上述两个条件的m.n,并且使m^2+n^2的值最大.例如,若K=19 ...
- vijos1543(极值问题)解题报告
(n^2-m*n-m^2)^2=1 是齐次多项式,设n>=m,n=m+t(t>=0). n^2-m*n-m^2=t^2-m*t-m^2 所以(t^2-m*t-m^2)^2=1. 如果n,m ...
随机推荐
- Java小例子——穷举质数,求平方和,求质因子。
求平方和 public static void main(String[] args) throws IOException { int n; String s; BufferedReader buf ...
- 细说PHP中strlen和mb_strlen的区别
在PHP中,strlen与mb_strlen是求字符串长度的函数,但是对于一些初学者来说,如果不看手册,也许不太清楚其中的区别.下面通过例子,讲解这两者之间的区别. $str='中文a字1符'; ec ...
- NFS挂载及写入故障
最近在做架构时,分离出来一台图片服务器,图片服务器是通过NFS(网络文件系统)给两台web服务器提供图片存储的,在编辑NFS配置文件(/etc/exports)时:想了一下,允许访问NFS共享目录的范 ...
- 【ElasticSearch】
ElasticSearch是基于Lucene开发的分布式搜索框架,包含如下特性: 分布式索引.搜索 索引自动分片.负载均衡 自动发现机器.组建集群 支持Restful 风格接口 配置简单等.
- Xcode常见错误以及解决方案
一.Undefined symbols for architecture x86_64: Xcode升级到5.1 新特性之一就是默认让所有App都通过64位编译器编译.原来在Xcode5.0.x的时候 ...
- checking it the current os is a 32bit or 64bit version 检查操作系统是32位还是64位
) { Console.WriteLine("32bit os"); } ) { Console.WriteLine("64bit os"); }
- JQ+AJAX实现多级联动
利用JQ与AJAX实现三级联动实现的效果: 当前两级改变时,后边一级或两级都会改变: 使用的数据库: html代码: <!doctype html> <html lang=" ...
- 使用WampServer 3.0
在server上安装了WampServer 发现本地使用良好,但是无法从别的PC访问. 原因有二: 1.现象:输入连接无反应 原因:server本身用了80端口,所有WampServer我就设置了80 ...
- AT&T 和 Intel 汇编语法的主要区别
转自AT&T 和 Intel 汇编语法的主要区别 作为一个爱折腾的大好青年,补番之余还要补一些 Linux 下的基础,比如 GDB 的正确使用方法.但无论是看 gdb 还是 gcc -S 里的 ...
- Fast CGI 工作原理
http://www.cppblog.com/woaidongmao/archive/2011/06/21/149092.html 一.FastCGI是什么? FastCGI是语言无关的.可伸缩架构的 ...