elk收集分析nginx access日志

首先elk的搭建按照这篇文章使用elk+redis搭建nginx日志分析平台说的,使用redis的push和pop做队列,然后有个logstash_indexer来从队列中pop数据分析插入elasticsearch。这样做的好处是可扩展,logstash_agent只需要收集log进入队列即可,比较可能会有瓶颈的log分析使用logstash_indexer来做,而这个logstash_indexer又是可以水平扩展的,我可以在单独的机器上跑多个indexer来进行日志分析存储。

好了,现在进一步配置了。

nginx中的日志存储格式

nginx由于有get请求,也有post请求,get请求的参数是会直接显示在日志的url中的,但是post请求的参数呢,却不会在access日志中体现出来。那么我想要post的参数也进行存储纪录下来。就需要自己定义一个log格式了。

log_format logstash '$http_host $server_addr $remote_addr [$time_local] "$request" $request_body $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_time $upstream_response_time';

这里的\(request_body里面存放的就是POST请求的body了,然后GET请求的参数在\)request里面。具体怎么分析,我们在indexer中再想。

这里的server_addr存放的是当前web机器的IP,存这个IP是为了分析日志的时候可以分析日志的原始来源。

下面是一个GET请求的例子:

api.yejianfeng.com 10.171.xx.xx 100.97.xx.xx [10/Jun/2015:10:53:24 +0800] "GET /api1.2/qa/getquestionlist/?limit=10&source=ios&token=12343425324&type=1&uid=304116&ver=1.2.379 HTTP/1.0" - 200 2950 "-" "TheMaster/1.2.379 (iPhone; iOS 8.3; Scale/2.00)" 0.656 0.654

下面是一个POST请求的例子:

api.yejianfeng.com 10.171.xx.xx 100.97.xx.xx [10/Jun/2015:10:53:24 +0800] "POST /api1.2/user/mechanicupdate/ HTTP/1.0" start_time=1276099200&lng=110.985723&source=android&uid=328910&lat=35.039471&city=140800 200 754 "-" "-" 0.161 0.159

顺便说下,这里知识在nginx.conf中定义了一个日志格式,还要记得在具体的服务中加入日志存储。比如

listen       80;
server_name api.yejianfeng.com;
access_log /mnt/logs/api.yejianfeng.com.logstash.log logstash;

log_agent的配置

这个配置就是往redis队列中塞入日志就行。output的位置设置为redis就行。

input {
file {
type => "nginx_access"
path => ["/mnt/logs/api.yejianfeng.com.logstash.log"]
}
}
output {
redis {
host => "10.173.xx.xx"
port => 8001
password => pass
data_type => "list"
key => "logstash:redis"
}
}

log_indexer的配置

log_indexer的配置就比较麻烦了,需要配置的有三个部分

  • input: 负责从redis中获取日志数据
  • filter: 负责对日志数据进行分析和结构化
  • output: 负责将结构化的数据存储进入elasticsearch

input部分

input {
redis {
host => "10.173.xx.xx"
port => 8001
password => pass
data_type => "list"
key => "logstash:redis"
}
}

其中的redis配置当然要和agent的一致了。

filter部分

解析文本可以使用grokgrok debug进行分析,参照着之前的log格式,需要一个个进行日志分析比对。这个grok语法写的还是比较复杂的,还好有在线grok比对工具可以使用。比对前面的GET和POST的日志格式,修改出来的grok语句如下:

%{IPORHOST:http_host} %{IPORHOST:server_ip} %{IPORHOST:client_ip} \[%{HTTPDATE:timestamp}\] \"%{WORD:http_verb} (?:%{PATH:baseurl}\?%{NOTSPACE:params}(?: HTTP/%{NUMBER:http_version})?|%{DATA:raw_http_request})\" (%{NOTSPACE:params})?|- %{NUMBER:http_status_code} (?:%{NUMBER:bytes_read}|-) %{QS:referrer} %{QS:agent} %{NUMBER:time_duration:float} %{NUMBER:time_backend_response:float}

这里使用了一点小技巧,params的使用,为了让GET和POST的参数都反映在一个参数上,在对应的GET和POST的参数的地方,都设计使用params这个参数进行对应。

好了,现在params中是请求的参数。比如source=ios&uid=123。但是呢,最后做统计的时候,我希望得出的是“所有source值为ios的调用”,那么就需要对参数进行结构化了。而且我们还希望如果接口中新加入了一个参数,不用修改logstash_indexer就可以直接使用,方法就是使用kv,kv能实现对一个字符串的结构进行k=v格式的拆分。其中的参数prefix可以为这个key在统计的时候增加一个前缀,include_keys可以设置有哪些key包含在其中,exclude_keys可以设置要排除哪些key。

kv {
prefix => "params."
field_split => "&"
source => "params"
}

好了,现在还有一个问题,如果请求中有中文,那么日志中的中文是被urlencode之后存储的。我们具体分析的时候,比如有个接口是/api/search?keyword=我们,需要统计的是keyword被查询的热门顺序,那么就需要解码了。logstash牛逼的也有urldecode命令,urldecode可以设置对某个字段,也可以设置对所有字段进行解码。

urldecode {
all_fields => true
}

看起来没事了,但是实际上在运行的时候,你会发现一个问题,就是存储到elasticsearch中的timestamp和请求日志中的请求时间不一样。原因是es中的请求日志使用的是日志结构存放进入es的时间,而不是timestamp的时间,这里想要吧es中的时间和请求日志中的时间统一怎么办呢?使用date命令。具体设置如下:

date {
locale => "en"
match => ["timestamp" , "dd/MMM/YYYY:HH:mm:ss Z"]
}

具体的logstash_indexer中的全部配置如下:

filter {
grok {
match => [
"message", "%{IPORHOST:http_host} %{IPORHOST:server_ip} %{IPORHOST:client_ip} \[%{HTTPDATE:timestamp}\] \"%{WORD:http_verb} (?:%{PATH:baseurl}\?%{NOTSPACE:params}(?: HTTP/%{NUMBER:http_version})?|%{DATA:raw_http_request})\" (%{NOTSPACE:params})?|- %{NUMBER:http_status_code} (?:%{NUMBER:bytes_read}|-) %{QS:referrer} %{QS:agent} %{NUMBER:time_duration:float} %{NUMBER:time_backend_response:float}"
]
}
kv {
prefix => "params."
field_split => "&"
source => "params"
}
urldecode {
all_fields => true
}
date {
locale => "en"
match => ["timestamp" , "dd/MMM/YYYY:HH:mm:ss Z"]
} }

output部分

这里就是很简单往es中发送数据

output {
elasticsearch {
embedded => false
protocol => "http"
host => "localhost"
port => "9200"
user => "yejianfeng"
password => "yejianfeng"
}
}

这里有个user和password,其实elasticsearch加上shield就可以强制使用用户名密码登录了。这里的output就是配置这个使用的。

查询elasticsearch

比如上面的例子,我要查询某段时间的params.source(其实是source参数,但是前面的params是前缀)调用情况

$url = 'http://xx.xx.xx.xx:9200/logstash-*/_search';
$filter = '
{
"query": {
"range" : {
"@timestamp" : {
"gt" : 123213213213,
"lt" : 123213213213
}
}
},
"aggs" : {
"group_by_source" : {"terms" : {"field" : "params.source"}}
},
"size": 0
}';

具体使用参考elasticsearch的文档

elk收集分析nginx access日志的更多相关文章

  1. elk实战分析nginx日志文档

    elk实战分析nginx日志文档 架构: kibana <--- es-cluster <--- logstash <--- filebeat 环境准备:192.168.3.1 no ...

  2. K8S(15)监控实战-ELK收集K8S内应用日志

    K8S监控实战-ELK收集K8S内应用日志 目录 K8S监控实战-ELK收集K8S内应用日志 1 收集K8S日志方案 1.1 传统ELk模型缺点: 1.2 K8s容器日志收集模型 2 制作tomcat ...

  3. 采集并分析Nginx访问日志

    日志服务支持通过数据接入向导配置采集Nginx日志,并自动创建索引和Nginx日志仪表盘,帮助您快速采集并分析Nginx日志. 许多个人站长选取了Nginx作为服务器搭建网站,在对网站访问情况进行分析 ...

  4. nginx access 日志位置

    nginx access 日志位置 /var/log/nginx tail -f access.log

  5. elk平台分析nginx日志的基本搭建

    一.elk套件介绍 ELK 由 ElasticSearch . Logstash 和 Kiabana 三个开源工具组成.官方网站: https://www.elastic.co/products El ...

  6. elk 入门 - 分析nginx日志 + json格式 + 有调试的意识 + elk7.2.0

    1.本次采用的一台主机,将所有的软件安装一台上进行测试工作. 2.安装部署:https://blog.51cto.com/hwg1227/2299995 3.简单调试 输出rubydebug inpu ...

  7. 使用hive分析nginx访问日志方法

    以下案例是使用hive分析nginx的访问日志案例,其中字段分隔通过正则表达式匹配,具体步骤如下: 日志格式: 192.168.5.139 - - [08/Jun/2017:17:09:12 +080 ...

  8. GoAccess安装及分析nginx实时日志

    GoAccess是一个基于终端的快速日志分析器.其核心思想是实时快速分析和查看Web服务器统计信息,而无需使用您的浏览器(如果您希望通过SSH快速分析访问日志,或者只是喜欢在终端中工作),终端输出是默 ...

  9. 分析nginx access log日志的命令

    统计访问最多的ip 1. tail -n 10000 xxaccess_log | cut -d " " -f 1 |sort|uniq -c|sort -rn|head -10 ...

随机推荐

  1. android user build serial console

    在 init.rc 里有一段 on property:ro.debuggable=1 start console 当user debug时 ro.debuggable=0,console 不会被启动 ...

  2. 避开WebForm天坑,拥抱ASP.Net MVC吧

    有鹏友在如鹏网的QQ群中提了一个问题: 请问,在ASP.Net中如何隐藏一个MenuItem,我想根据不同的权限,对功能菜单进行隐藏,用style不行. 如果要仅仅解答这个问题,很好解答,答案很简单: ...

  3. 细数.NET 中那些ORM框架 —— 谈谈这些天的收获之一

    细数.NET 中那些ORM框架 —— 谈谈这些天的收获之一(转) ADO.NET Entity Framework        ADO.NET Entity Framework 是微软以 ADO.N ...

  4. 5天玩转C#并行和多线程编程 —— 第四天 Task进阶

    5天玩转C#并行和多线程编程系列文章目录 5天玩转C#并行和多线程编程 —— 第一天 认识Parallel 5天玩转C#并行和多线程编程 —— 第二天 并行集合和PLinq 5天玩转C#并行和多线程编 ...

  5. 【译】用Fragment解决屏幕旋转(状态发生变化)状态不能保持的问题

    这篇文章解决了在StackOverflow上一个经常被提到的问题. 在配置发生变化(Configuration changs)时,什么是最好的保存活动对象方法,比如运行中的线程,Sockets,Asy ...

  6. Gradle与Gatling脚本集成

    Gatling作为次时代的性能测试工具,由于其API简洁明了.性能出众,越来越受欢迎.但是运行Gatling脚本却有诸多不便,其提供的默认方式不是很方便.考虑到Gatling脚本本质上是Scala类, ...

  7. ASP.NET MVC实现仪表程序

    1.1.1 摘要 在大多数情况下,我们的Web程序不仅仅需要给用户提供具体数据,在一些情况下,我们还需要给高级的用户或管理者提供数据汇总和分析图表之类的功能. 如果我们不想显示一大堆烦心的数据,希望通 ...

  8. Javascript模块化编程笔记

    最近在读阮一峰的博客http://www.ruanyifeng.com/blog/2012/10/javascript_module.html,随手记录一些重要笔记.  Javascript模块的雏形 ...

  9. [Linux]Linux下redis的安装及配置.

    在上一篇[Linux] linux下安装配置 zookeeper/redis/solr/tomcat/IK分词器 详细实例. 我们已经将redis所需tar包拷贝到了linux下的root 根目录下, ...

  10. qqzoneQQ空间漏洞扫描器的设计attilax总结

    qqzoneQQ空间漏洞扫描器的设计attilax总结 1.1. 获取对方qq(第三方,以及其他机制)1 1.2. QQ空间的html流程1 1.3. 判断是否有权限1 1.4. 2015年度Web服 ...