Fun With Fractions
Time Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:65536KB
Total submit users: 152, Accepted users: 32
Problem 12878 : No special judgement
Problem description

A rational number can be represented as the ratio of two integers, referred to as the numerator (n) and the denominator (d) and written n/d. A rational number's representation is not unique. For example the rational numbers 1/2 and 2/4 are equivalent. A rational number representation is described as "in lowest terms" if the numerator and denominator have no common factors. Thus 1/2 is in lowest terms but 2/4 is not. A rational number can be reduced to lowest terms by dividing by the greatest common divisor of n and d.
Addition of rational
numbers is defined as follows. Note that the right hand side of this equality
will not necessarily be in lowest terms.

A
rational number for which the numerator is greater than or equal to the
denominator can be displayed in mixed format, which includes a whole number part
and a fractional part.
For example, 51/3 is a mixed format representation of
the rational number 16/3. Your task is to write a program that reads a sequence
of rational numbers and displays their sum.

Input

Input will consist of specifications for a series of tests. Information for
each test begins with a line containing a single integer 1 <= n < 1000
indicating how many values follow. A count of zero terminates the input.
The
n following lines each contain a single string with no embedded whitespace .
Each string represents a rational number, which could be in any of the following
forms and will not necessarily be in lowest terms (w, n, and d are integers: 0
<= w,n < 1000, 1 <= d < 1000).
• w,n/d: a mixed number equivalent
to the rational number (w*d + n) / d.
• n/d: a rational number with a zero
whole number part
• w: a whole number with a zero fractional
part

Output

Output should consist of one line for each test comprising the test number
(formatted as shown) followed by a single space and the sum of the input number
sequence. The sum should be displayed in lowest terms using mixed number format.
If either the whole number part or the fractional part is zero, that part should
be omitted. As a special case, if both parts are zero, the value should be
displayed as a single 0.

Sample Input
2
1/2
1/3
3
1/3
2/6
3/9
3
1
2/3
4,5/6
0
Sample Output
Test 1: 5/6
Test 2: 1
Test 3: 6,1/2
Problem Source
HNU Contest 

Mean:

给你n个数,其中包含分数、整数,对这n个数求和。

analyse:

按照题目意思模拟即可,主要考察coding能力.

Time complexity:O(n)

Source code:

//Memory   Time
//  K      MS
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<vector>
#include<queue>
#include<stack>
#include<iomanip>
#include<string>
#include<climits>
#include<cmath>
#define MAX 1005
#define LL long long
using namespace std;
int n,kase=;
int flag[MAX];
char str[MAX][];
void read()
{
   memset(flag,,sizeof(flag));
   for(int i=;i<=n;i++)
   {
       scanf("%s",str[i]);
       int len=strlen(str[i]);
       for(int j=;j<len;j++)
       {
           if(str[i][j]==',')
           {
               flag[i]=;
               break;
           }
           else if(str[i][j]=='/')
           {
               flag[i]=;
               break;
           }
       }
   }
}

int gcd(int a,int b)
{
   if(b==)
       return a;
   else return gcd(b,a%b);
}

int lcm(int a,int b)
{
   int x=gcd(a,b);
   return a*b/x;
}

void solve()
{
   int num;
   int zi=,mu=;
  for(int i=;i<=n;i++)
  {
       int a,b;
      if(flag[i]==)   //  6
      {
          sscanf(str[i],"%d",&num);
          zi+=mu*num;
          continue;
      }
      else if(flag[i]==)    //  6,5/3
      {
          sscanf(str[i],"%d,%d/%d",&num,&a,&b);
          zi+=mu*num;
      }
      else     // 5/3
      {
          sscanf(str[i],"%d/%d",&a,&b);
      }
      int newmu=lcm(mu,b);
      int newa=(newmu/b)*a;
      int newzi=(newmu/mu)*zi;
      zi=newzi+newa;
      mu=newmu;
      if(zi%mu==)
      {
          zi=zi/mu;
          mu=;
          continue;
      }
  }
  zi-=mu;
  if(gcd(zi,mu)!=)
  {
      int tmp=gcd(zi,mu);
      zi/=tmp;
      mu/=tmp;
  }
  if(zi==||mu==)
  {
      puts("0");
      return ;
  }
  if(zi>=mu)
  {
      if(zi%mu==)
      {
          printf("%d\n",zi/mu);
          return ;
      }
      else
      {
          int integer=;
          while(zi>mu)
          {
              zi-=mu,integer++;
          }
          printf("%d,%d/%d\n",integer,zi,mu);
          return ;
      }
  }
  else
   printf("%d/%d\n",zi,mu);
}

int main()
{
//    freopen("cin.txt","r",stdin);
//    freopen("cout.txt","w",stdout);
   while(~scanf("%d",&n),n)
   {
       read();
       printf("Test %d: ",kase++);
       solve();
   }

return ;
}

模拟 --- hdu 12878 : Fun With Fractions的更多相关文章

  1. [模拟] hdu 4452 Running Rabbits

    意甲冠军: 两个人在一个人(1,1),一个人(N,N) 要人人搬家每秒的速度v.而一个s代表移动s左转方向秒 特别值得注意的是假设壁,反弹.改变方向 例如,在(1,1),采取的一个步骤,以左(1,0) ...

  2. [ACM_模拟] HDU 1006 Tick and Tick [时钟间隔角度问题]

    Problem Description The three hands of the clock are rotating every second and meeting each other ma ...

  3. 优先队列 + 模拟 - HDU 5437 Alisha’s Party

    Alisha’s Party Problem's Link Mean: Alisha过生日,有k个朋友来参加聚会,由于空间有限,Alisha每次开门只能让p个人进来,而且带的礼物价值越高就越先进入. ...

  4. HDU题解索引

    HDU 1000 A + B Problem  I/O HDU 1001 Sum Problem  数学 HDU 1002 A + B Problem II  高精度加法 HDU 1003 Maxsu ...

  5. HDU 5912 Fraction 【模拟】 (2016中国大学生程序设计竞赛(长春))

    Fraction Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  6. HDU 5102 The K-th Distance(模拟)

    题意:输入一棵树,输出前k小的点对最短距离dis(i,j)的和. 模拟,官方题解说得很清楚了.不重复了. http://bestcoder.hdu.edu.cn/ 需要注意的是,复杂度要O(n+k), ...

  7. hdu 5071(2014鞍山现场赛B题,大模拟)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5071 思路:模拟题,没啥可说的,移动的时候需要注意top的变化. #include <iostr ...

  8. HDU 5510---Bazinga(指针模拟)

    题目链接 http://acm.hdu.edu.cn/search.php?action=listproblem Problem Description Ladies and gentlemen, p ...

  9. HDU 5047 Sawtooth(大数模拟)上海赛区网赛1006

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5047 解题报告:问一个“M”型可以把一个矩形的平面最多分割成多少块. 输入是有n个“M",现 ...

随机推荐

  1. jQuery 绑定事件到动态创建的元素上

    在进入主题之前,我们先来看一个前台页面经常用到的功能:点击页面输入框时自动选择其中文本. 很容易想到利用输入框的focus事件,当输入框获得焦点时,再调用jQuery的select()方法. Okay ...

  2. [我给Unity官方视频教程做中文字幕]beginner Graphics – Lessons系列之纹理Textures

    [我给Unity官方视频教程做中文字幕]beginner Graphics – Lessons系列之纹理Textures 本篇分享一下第6个已完工的视频,即<beginner Graphics ...

  3. 数据库的Timeout

    数据库的Timeout 其实有很多种情况. 一个是执行的超时时间 executionTimeOut,一个是连接的超时时间connectionTimeOut, 还有呢? 等待的超时时间 ReadTime ...

  4. java加密-解密小结

    加密算法可以分为 双向加密(对称加密.不对称加密) 单向加密(不可逆加密)—— MD5.sha.hmac... 在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密 有: ...

  5. svn import-纳入版本控制

    转svn import-纳入版本控制 import: 将未纳入版本控制的文件或目录树提交到版本库.用法: import [PATH] URL 递归地提交 PATH 的副本至 URL.  如果省略 PA ...

  6. Memcache分布式部署方案

    基础环境 其实基于PHP扩展的Memcache客户端实际上早已经实现,而且非常稳定.先解释一些名词,Memcache是danga.com的一个开源项目,可以类比于MySQL这样的服务,而PHP扩展的M ...

  7. 树形打印lua table表

    为方便调试lua程序,往往想以树的形式打印出一个table,以观其表内数据.以下罗列了三种种关于树形打印lua table的方法;法一 local print = print local tconca ...

  8. Atitit 图像处理 公共模块 矩阵扫描器

    Atitit 图像处理 公共模块 矩阵扫描器 1.1. 调用说明对矩阵像素遍历处理调用1 2. 矩阵扫描器主题结构1 2.1. 主要说明 从像素点开始填充矩阵1 2.2. 得到模板中心点所对应的图像坐 ...

  9. Android笔记——活动的生命周期

    一.活动的重要性 掌握活动的生命周期对任何 Android 开发者来说都非常重要,当你深入理解活动的生命周期之后,就可以写出更加连贯流畅的程序,并在如何合理管理应用资源方面,你会发挥的游刃有余.你的应 ...

  10. 为什么获取的System.Web.HttpContext.Current值为null,HttpContext对象为null时如何获取程序(站点)的根目录

    ASP.NET提供了静态属性System.Web.HttpContext.Current,因此获取HttpContext对象就非常方便了.也正是因为这个原因,所以我们经常能见到直接访问System.W ...