CF 484E - Sign on Fence
4 seconds
256 megabytes
standard input
standard output
Bizon the Champion has recently finished painting his wood fence. The fence consists of a sequence of n panels of 1 meter width and of arbitrary height. The i-th panel's height is hi meters. The adjacent planks follow without a gap between them.
After Bizon painted the fence he decided to put a "for sale" sign on it. The sign will be drawn on a rectangular piece of paper and placed on the fence so that the sides of the sign are parallel to the fence panels and are also aligned with the edges of some panels. Bizon the Champion introduced the following constraints for the sign position:
- The width of the sign should be exactly w meters.
- The sign must fit into the segment of the fence from the l-th to the r-th panels, inclusive (also, it can't exceed the fence's bound in vertical direction).
The sign will be really pretty, So Bizon the Champion wants the sign's height to be as large as possible.
You are given the description of the fence and several queries for placing sign. For each query print the maximum possible height of the sign that can be placed on the corresponding segment of the fence with the given fixed width of the sign.
The first line of the input contains integer n — the number of panels in the fence (1 ≤ n ≤ 105).
The second line contains n space-separated integers hi, — the heights of the panels (1 ≤ hi ≤ 109).
The third line contains an integer m — the number of the queries (1 ≤ m ≤ 105).
The next m lines contain the descriptions of the queries, each query is represented by three integers l, r and w (1 ≤ l ≤ r ≤ n,1 ≤ w ≤ r - l + 1) — the segment of the fence and the width of the sign respectively.
For each query print the answer on a separate line — the maximum height of the sign that can be put in the corresponding segment of the fence with all the conditions being satisfied.
5
1 2 2 3 3
3
2 5 3
2 5 2
1 5 5
2
3
1
The fence described in the sample looks as follows:

The possible positions for the signs for all queries are given below.
The optimal position of the sign for the first query.
The optimal position of the sign for the second query.
CF上的一道题,给你若干个高度不一的木板,高度为h1...hn,回答m次询问,每次询问(l,r,w)表示l...r区间内,用宽度不小于w的长条覆盖木板,长条的最大高度是多少。
CF给的题解是用函数式线段树,维护各个区间内木板高度的线段树,二分答案然后查询函数式线段树中最大的连续“1”的长度,进行比较。
可以用函数式线段树做的题,一般也可以用整体二分做。相当于一个是在线二分,一个是离线二分。
整体二分的思路是:
二分答案,把高度>mid的木板插入到线段树中,某位置有木板为1,没有为0。
对于询问,统计最大的连续“1”的长度,然后和w比较,长度>=w就往[mid+1,r]区间划分,<w就往[l,mid]区间划分。
这样二分到底层,所有询问的答案也就确定了。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
#define inf 1000000007
#define maxn 420000
#define maxm 420000 using namespace std; int n,m,tot,cnt;
int a[maxn], ans[maxm]; struct query
{
int id,x,y,z,cur;
query(){}
query(int id,int x,int y,int z,int cur):
id(id),x(x),y(y),z(z),cur(cur){}
}q[maxm],q1[maxm],q2[maxm]; struct segtree
{
int mx[maxn*], lmx[maxn*], rmx[maxn*], size[maxn*];
void update(int x)
{
mx[x]=max(max(mx[x*],mx[x*+]),rmx[x*]+lmx[x*+]);
if (lmx[x*]==size[x*]) lmx[x]=size[x*]+lmx[x*+];
else lmx[x]=lmx[x*];
if (rmx[x*+]==size[x*+]) rmx[x]=size[x*+]+rmx[x*];
else rmx[x]=rmx[x*+];
}
void build(int x,int l,int r)
{
if (l==r)
{
size[x]=;
return ;
}
int mid=(l+r)>>;
build(x*,l,mid);
build(x*+,mid+,r);
size[x]=size[x*]+size[x*+];
}
void add(int x, int l, int r, int pos, int z)
{
if (l==r)
{
mx[x]=lmx[x]=rmx[x]=z;
return ;
}
int mid=(l+r)>>;
if (pos<=mid) add(x*, l, mid, pos, z);
else add(x*+, mid+, r, pos, z);
update(x);
}
int ask(int x, int l, int r, int ll, int rr, int &res)
{
if (ll<=l && r<=rr)
{
int tmp=max(res+lmx[x], mx[x]);
if (rmx[x]==size[x]) res+=size[x];
else res=rmx[x];
return tmp;
}
int mid=(l+r)>>, tmp=;
if (ll<=mid) tmp=max(tmp,ask(x*, l, mid, ll, rr, res));
if (rr>mid) tmp=max(tmp,ask(x*+, mid+, r, ll, rr, res));
return tmp;
}
void init()
{
memset(mx,,sizeof(mx));
memset(lmx,,sizeof(lmx));
memset(rmx,,sizeof(rmx));
}
}tree; void solve(int st,int ed,int l,int r)
{
if (st>ed) return ;
if (l>=r)
{
for (int i=st;i<=ed;i++) ans[q[i].id]=l;
return ;
}
int mid=(l+r)>>, n1=, n2=;
for (int i=st;i<=ed;i++)
{
if (q[i].id==)
{
if (q[i].y>mid)
{
tree.add(, , n, q[i].x, );
q2[n2++]=q[i];
}
else
q1[n1++]=q[i];
}
else
{
int res=;
int tmp=tree.ask(, , n, q[i].x, q[i].y, res);
if (tmp>=q[i].z)
q2[n2++]=q[i];
else
q1[n1++]=q[i];
}
}
for (int i=;i<n1;i++) q[st+i]=q1[i];
for (int i=;i<n2;i++) q[st+n1+i]=q2[i];
solve(st,st+n1-,l,mid);
for (int i=st;i<=ed;i++)
if (q[i].id== && q[i].y>mid) tree.add(, , n, q[i].x, );
solve(st+n1,ed,mid+,r);
} int main()
{
scanf("%d",&n);
tot=;
for (int i=;i<=n;i++)
{
scanf("%d",&a[i]);
q[tot++]=query(,i,a[i],,);
}
scanf("%d",&m);
int x,y,z;
for (int i=;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
q[tot++]=query(i,x,y,z,);
}
tree.init();
tree.build(,,n);
solve(,tot-,,inf);
for (int i=;i<=m;i++) printf("%d\n",ans[i]);
return ;
}
Sign on Fence
CF 484E - Sign on Fence的更多相关文章
- (困难) CF 484E Sign on Fence,整体二分+线段树
Bizon the Champion has recently finished painting his wood fence. The fence consists of a sequence o ...
- Codeforces 484E Sign on Fence(是持久的段树+二分法)
题目链接:Codeforces 484E Sign on Fence 题目大意:给定给一个序列,每一个位置有一个值,表示高度,如今有若干查询,每次查询l,r,w,表示在区间l,r中, 连续最长长度大于 ...
- CF&&CC百套计划4 Codeforces Round #276 (Div. 1) E. Sign on Fence
http://codeforces.com/contest/484/problem/E 题意: 给出n个数,查询最大的在区间[l,r]内,长为w的子区间的最小值 第i棵线段树表示>=i的数 维护 ...
- AC日记——Sign on Fence Codeforces 484e
E. Sign on Fence time limit per test 4 seconds memory limit per test 256 megabytes input standard in ...
- 【CF484E】Sign on Fence(主席树)
[CF484E]Sign on Fence(主席树) 题面 懒得贴CF了,你们自己都找得到 洛谷 题解 这不就是[TJOI&HEOI 排序]那题的套路吗... 二分一个答案,把大于答案的都变成 ...
- Codeforces Round #276 (Div. 1) E. Sign on Fence 二分+主席树
E. Sign on Fence Bizon the Champion has recently finished painting his wood fence. The fence consi ...
- CF484E Sign on Fence && [国家集训队]middle
CF484E Sign on Fence #include<bits/stdc++.h> #define RG register #define IL inline #define _ 1 ...
- Sign on Fence CodeForces - 484E
http://codeforces.com/problemset/problem/484/E 题意: 给定一个长度为n的数列,有m次询问,询问形如l r k 要你在区间[l,r]内选一个长度为k的区间 ...
- cf B. Color the Fence
http://codeforces.com/contest/349/problem/B 贪心 #include <cstdio> #include <cstring> #inc ...
随机推荐
- linux常用命令(四)
1.压缩解压命令 gzip命令 默认为.gz格式文件 1.只能压缩文件不可压缩目录 2.不保留源文件 压缩 giz 解压 gunip tar命令 -c产生打包文件 -v显示相信打包压缩过程 - ...
- Invoke-Command和-ComputerName 效率比较
看到网上有文章说Invoke-Command的方式相较其他方式的效率要高,特地试验了一下,但是这个实验不是很好: 机器只有2台 0. 用Get-WinEvent,日志数=200,Invoke方式快 1 ...
- ios程序发布测试打包
1. 获取测试机UDID 手机连接电脑,打开iTunes-摘要-点击序列号,设备概要界面显示设备udid-反键-拷贝 2. 添加设备 取得UDID后,进入开发者中心-iOS PRovisioning ...
- hosts的设置,我们直接可以在下面路径找到hosts文件:C:\Windows\System32\drivers\etc
hosts的设置,我们直接可以在下面路径找到hosts文件:C:\Windows\System32\drivers\etc
- java编程题
第一题:输入字符串长度len1,字符串s1,字符串长度len2,字符串s2.从后向前比较,以最短字符串为标准,输出不同的元素的个数. 例如: 输入:s1="1,3,5" ...
- 如何在使用itext生成pdf文档时给文档添加背景图片
这个问题我在网上搜了很久,没有找到什么解决方案,需求其实很简单,就是添加背景图片.在解决这个问题之前,我们需要了解什么是背景图片?背景图片就是位于文档最底层的图片,文字和其他内容可以浮在它的上面.这又 ...
- Find Missing Term in Arithmetic Progression 等差数列缺失项
查找等差数列中的缺失项. e.g.Input: arr[] = {2, 4, 8, 10, 12, 14} Output: 6 Input: arr[] = {1, 6, 11, 16, 21, 31 ...
- Java class,Object,Class的区别
代码: http://www.cnblogs.com/hongdada/p/6060487.html package com.company; public class Main { public s ...
- magento目录结构说明,Magento文件夹结构说明,Magento folder structure
/app – 程序根目录 /app/etc – 全局配置文件目录 /app/code – 所有模块安装其模型和控制器的目录 /app/code/core – 核心代码或经过认证 ...
- mpt_voronoi demo
% %demo1% A=rand(3,10);% pbound=Polyhedron([0 0 0;150 0 0;150 150 0;0 150 0; 0 0 1;150 0 1;150 150 1 ...