洛谷 P3803 多项式乘法(FFT) —— FFT
题目:https://www.luogu.org/problemnew/show/P3803
终于学了FFT了!
参考博客:https://www.cnblogs.com/zwfymqz/p/8244902.html
http://www.cnblogs.com/RabbitHu/p/FFT.html
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
int const xn=(<<);//*2 n+m
db const Pi=acos(-1.0);
int n,m,rev[xn],lim;
struct com{db x,y;}a[xn],b[xn];
com operator + (com a,com b){return (com){a.x+b.x,a.y+b.y};}
com operator - (com a,com b){return (com){a.x-b.x,a.y-b.y};}
com operator * (com a,com b){return (com){a.x*b.x-a.y*b.y,a.x*b.y+b.x*a.y};}
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return f?ret:-ret;
}
void fft(com *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)//mid<lim
{
com wn=(com){cos(Pi/mid),tp*sin(Pi/mid)};
for(int j=,len=(mid<<);j<lim;j+=len)
{
com w=(com){,};
for(int k=;k<mid;k++,w=w*wn)
{
com x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y;
a[j+mid+k]=x-y;
}
}
}
}
int main()
{
n=rd(); m=rd();
for(int i=;i<=n;i++)a[i].x=rd();
for(int i=;i<=m;i++)b[i].x=rd();
lim=; int l=;
while(lim<=n+m)lim<<=,l++;
for(int i=;i<lim;i++)
rev[i]=(rev[i>>]>>)|((i&)<<(l-));
fft(a,); fft(b,);
for(int i=;i<lim;i++)a[i]=a[i]*b[i];
fft(a,-);
for(int i=;i<=n+m;i++)
printf("%d ",(int)(a[i].x/lim+0.5)); puts("");
return ;
}
洛谷 P3803 多项式乘法(FFT) —— FFT的更多相关文章
- [uoj#34] [洛谷P3803] 多项式乘法(FFT)
新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_ ...
- 洛谷 P3803 多项式乘法
题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1 ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 洛谷P3803 【模板】多项式乘法(FFT)
P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...
- 洛谷 P3803 【模板】多项式乘法(FFT)
题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...
- 洛谷p3803 FFT入门
洛谷p3803 FFT入门 ps:花了我一天的时间弄懂fft的原理,感觉fft的折半很神奇! 大致谈一谈FFT的基本原理: 对于两个多项式的卷积,可以O(n^2)求出来(妥妥的暴力) 显然一个多项式可 ...
- 【luogu P3803】【模板】多项式乘法(FFT)
[模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...
- 多项式乘法(FFT)模板 && 快速数论变换(NTT)
具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DF ...
- 洛谷P1067 多项式输出 NOIP 2009 普及组 第一题
洛谷P1067 多项式输出 NOIP 2009 普及组 第一题 题目描述 一元n次多项式可用如下的表达式表示: 输入输出格式 输入格式 输入共有 2 行 第一行 1 个整数,n,表示一元多项式的次数. ...
随机推荐
- 利用泛型和反射,管理配置文件,把Model转换成数据行,并把数据行转换成Model
利用泛型和反射,管理配置文件,把Model转换成数据行,并把数据行转换成Model 使用场景:网站配置项目,为了便于管理,网站有几个Model类来管理配置文件, 比如ConfigWebsiteMo ...
- selector的button选中处理问题
1.背景介绍 在做Android项目开发的时候,有时我们须要对button做一些特殊的处理,比方button点击的时候会有一个动画的效果,实际上就是几张图片在短时间的切换.再比方有时候我们须要对界面的 ...
- 获取Android屏幕尺寸、控件尺寸、状态栏/通知栏高度、导航栏高度
1.获取Android屏幕尺寸 我们能够通过getSize()方法获得屏幕的尺寸 Display display = getWindowManager().getDefaultDisplay(); P ...
- Django-select_related优化查询
对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化. select_related 返回一个QueryS ...
- nyoj84 阶乘的0
阶乘的0 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描写叙述 计算n!的十进制表示最后有多少个0 输入 第一行输入一个整数N表示測试数据的组数(1<=N<=1 ...
- openwrt spi flash 分区适配过程
openwrt spi flash 分区适配过程 这里基于 openwrt mt7620a 平台来跟踪,主要是想理清 dts 里的分区描述是如何一步步转化成内核分区行为. 先来看看 dts 中关于分区 ...
- 流迭代器 + 算法灵活控制IO流
前言 标准算法配合迭代器使用太美妙了,使我们对容器(数据)的处理更加得心应手.那么,能不能对IO流也使用标准算法呢?有人认为不能,他们说因为IO流不是容器,没有迭代器,故无法使用标准算法.他们错了,错 ...
- ffmpeg下载rtmp flv
ffmpeg -i rtmp://shanghai.chinatax.gov.cn:1935/fmsApp/16a0148f117.flv -c copy dump.flv
- mysql中索引的使用
索引是加速查询的主要手段,特别对于涉及多个表的查询更是如此.本节中,将介绍索引的作用.特点,以及创建和删除索引的语法. 使用索引优化查询 索引是快速定位数据的技术,首先通过一个示例来了解其含义及作用. ...
- 简单老式Java对象 横切关注点 最小侵入性编程 声明式编程 避免强迫类继承和接口实现
Spring In Action data injection aspect-oriented programming Plain Old Java Object 依赖注入能让相互协作的软件组件保持松 ...