题目:https://www.luogu.org/problemnew/show/P3803

终于学了FFT了!

参考博客:https://www.cnblogs.com/zwfymqz/p/8244902.html

http://www.cnblogs.com/RabbitHu/p/FFT.html

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
int const xn=(<<);//*2 n+m
db const Pi=acos(-1.0);
int n,m,rev[xn],lim;
struct com{db x,y;}a[xn],b[xn];
com operator + (com a,com b){return (com){a.x+b.x,a.y+b.y};}
com operator - (com a,com b){return (com){a.x-b.x,a.y-b.y};}
com operator * (com a,com b){return (com){a.x*b.x-a.y*b.y,a.x*b.y+b.x*a.y};}
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return f?ret:-ret;
}
void fft(com *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)//mid<lim
{
com wn=(com){cos(Pi/mid),tp*sin(Pi/mid)};
for(int j=,len=(mid<<);j<lim;j+=len)
{
com w=(com){,};
for(int k=;k<mid;k++,w=w*wn)
{
com x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y;
a[j+mid+k]=x-y;
}
}
}
}
int main()
{
n=rd(); m=rd();
for(int i=;i<=n;i++)a[i].x=rd();
for(int i=;i<=m;i++)b[i].x=rd();
lim=; int l=;
while(lim<=n+m)lim<<=,l++;
for(int i=;i<lim;i++)
rev[i]=(rev[i>>]>>)|((i&)<<(l-));
fft(a,); fft(b,);
for(int i=;i<lim;i++)a[i]=a[i]*b[i];
fft(a,-);
for(int i=;i<=n+m;i++)
printf("%d ",(int)(a[i].x/lim+0.5)); puts("");
return ;
}

洛谷 P3803 多项式乘法(FFT) —— FFT的更多相关文章

  1. [uoj#34] [洛谷P3803] 多项式乘法(FFT)

    新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_ ...

  2. 洛谷 P3803 多项式乘法

    题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1 ...

  3. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  4. 洛谷P3803 【模板】多项式乘法(FFT)

    P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...

  5. 洛谷 P3803 【模板】多项式乘法(FFT)

    题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...

  6. 洛谷p3803 FFT入门

    洛谷p3803 FFT入门 ps:花了我一天的时间弄懂fft的原理,感觉fft的折半很神奇! 大致谈一谈FFT的基本原理: 对于两个多项式的卷积,可以O(n^2)求出来(妥妥的暴力) 显然一个多项式可 ...

  7. 【luogu P3803】【模板】多项式乘法(FFT)

    [模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...

  8. 多项式乘法(FFT)模板 && 快速数论变换(NTT)

    具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DF ...

  9. 洛谷P1067 多项式输出 NOIP 2009 普及组 第一题

    洛谷P1067 多项式输出 NOIP 2009 普及组 第一题 题目描述 一元n次多项式可用如下的表达式表示: 输入输出格式 输入格式 输入共有 2 行 第一行 1 个整数,n,表示一元多项式的次数. ...

随机推荐

  1. phonegap工程搭建基础(一)

      官网:http://cordova.apache.org   一.环境配置 1. 安装Cordova   on OS X and Linux: $ sudo npm install -g cord ...

  2. Spring核心(ioc控制反转)

     IoC,Inversion Of Control 即控制反转,由容器来管理业务对象之间的依赖关系,而非传统方式中的由代码来管理. 其本质.即将控制权由应用程序代码转到了外部容器,控制权的转移就是 ...

  3. java new一个接口到底要做什么

    转自:http://www.cnblogs.com/yjmyzz/p/3448330.html java中的匿名类有一个倍儿神奇的用法,见下面代码示例: 1 package contract; 2 3 ...

  4. Twitter网站架构分析介绍

    http://www.kaiyuanba.cn/html/1/131/147/7539.htm作为140个字的缔造者,twitter太简单了,又太复杂了,简单是因为仅仅用140个字居然使有几次世界性事 ...

  5. mysql binlog配置详解

    关闭binlog,注释掉mysql配置文件中的log-bin=mysql-bin即可     baidu zone - 关闭binlog方法   cnblogs - linux下mysql配置文件my ...

  6. 基于HTML,css,jQuery,JavaScript,MySQL搭建博客系统

    一.登陆注册 二.登录验证码相关 三.博客首页显示相关 四.当前用户的家目录显示 五.点赞以及取消 六.父评论以及子评论操作 七.后台管理首页 八.文章的操作(增.删,改) 九.文件上传问题 十.me ...

  7. docker--caffe

    Running an official image You can run one of the automatic builds. E.g. for the CPU version: docker ...

  8. Android API Guides---NFC Basics

    本文档介绍了Android中运行基本任务NFC. 它说明了怎样在NDEF消息的形式发送和接收数据的NFC并介绍了支持这些功能的Andr​​oid框架的API. 对于更高级的主题.包含与非NDEF数据工 ...

  9. Linux环境下安装ActiveMq

    一.准备安装的tar包 1.将安装包放在服务器上:apache-activemq-5.10.2.tar.gz 2.将安装包解压:tar -zxvf apache-activemq-5.10.2.tar ...

  10. C++编程规范纲要要点小结

    这是一本好书, 可以让你认清自己对C++的掌握程度. 看完之后,给自己打分,我对C++了解多少? 答案是不足20分. 对于我自己是理所当然的问题, 就不提了, 记一些有启发的条目和细节: (*号表示不 ...