题目:https://www.luogu.org/problemnew/show/P3803

终于学了FFT了!

参考博客:https://www.cnblogs.com/zwfymqz/p/8244902.html

http://www.cnblogs.com/RabbitHu/p/FFT.html

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
int const xn=(<<);//*2 n+m
db const Pi=acos(-1.0);
int n,m,rev[xn],lim;
struct com{db x,y;}a[xn],b[xn];
com operator + (com a,com b){return (com){a.x+b.x,a.y+b.y};}
com operator - (com a,com b){return (com){a.x-b.x,a.y-b.y};}
com operator * (com a,com b){return (com){a.x*b.x-a.y*b.y,a.x*b.y+b.x*a.y};}
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return f?ret:-ret;
}
void fft(com *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)//mid<lim
{
com wn=(com){cos(Pi/mid),tp*sin(Pi/mid)};
for(int j=,len=(mid<<);j<lim;j+=len)
{
com w=(com){,};
for(int k=;k<mid;k++,w=w*wn)
{
com x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y;
a[j+mid+k]=x-y;
}
}
}
}
int main()
{
n=rd(); m=rd();
for(int i=;i<=n;i++)a[i].x=rd();
for(int i=;i<=m;i++)b[i].x=rd();
lim=; int l=;
while(lim<=n+m)lim<<=,l++;
for(int i=;i<lim;i++)
rev[i]=(rev[i>>]>>)|((i&)<<(l-));
fft(a,); fft(b,);
for(int i=;i<lim;i++)a[i]=a[i]*b[i];
fft(a,-);
for(int i=;i<=n+m;i++)
printf("%d ",(int)(a[i].x/lim+0.5)); puts("");
return ;
}

洛谷 P3803 多项式乘法(FFT) —— FFT的更多相关文章

  1. [uoj#34] [洛谷P3803] 多项式乘法(FFT)

    新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_ ...

  2. 洛谷 P3803 多项式乘法

    题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1 ...

  3. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  4. 洛谷P3803 【模板】多项式乘法(FFT)

    P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...

  5. 洛谷 P3803 【模板】多项式乘法(FFT)

    题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...

  6. 洛谷p3803 FFT入门

    洛谷p3803 FFT入门 ps:花了我一天的时间弄懂fft的原理,感觉fft的折半很神奇! 大致谈一谈FFT的基本原理: 对于两个多项式的卷积,可以O(n^2)求出来(妥妥的暴力) 显然一个多项式可 ...

  7. 【luogu P3803】【模板】多项式乘法(FFT)

    [模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...

  8. 多项式乘法(FFT)模板 && 快速数论变换(NTT)

    具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DF ...

  9. 洛谷P1067 多项式输出 NOIP 2009 普及组 第一题

    洛谷P1067 多项式输出 NOIP 2009 普及组 第一题 题目描述 一元n次多项式可用如下的表达式表示: 输入输出格式 输入格式 输入共有 2 行 第一行 1 个整数,n,表示一元多项式的次数. ...

随机推荐

  1. redis 在我做的容器中的配置路劲

    配置 /etc/redis/redis.conf 数据库位置 /var/lib/redis/dump.rdb

  2. Cocos2d-x 3.0final 终结者系列教程15-win7+vs2012+adt+ndk环境搭建(无Cygwin)

    最终不用Cygwin 了.非常高兴 为什么要用Win7? 由于VS2012要求Win7以上系统才干安装! 为什么要用vs2012? 由于VS2012才支持C++11! 为什么要支持C++11? 由于C ...

  3. javascript 返回上一页面

    <a href="<a href="javascript :history.back(-1)">返回上一页</a>或<a href=& ...

  4. 五、Web框架基础(2)

    Tornado 异步协程编程.(其实是异步IO而非真正的异步,从内核拷贝到用户空间的过程还是同步的) 适合用户量大.高并发,如抢票.网页游戏.在线聊天等场景:或大量HTTP持久连接,通过单TCP持久连 ...

  5. 图像处理之opencv---mat、cvmat、IplImage之间的转换

    一.Mat类型:矩阵类型,Matrix.  在openCV中,Mat是一个多维的密集数据数组.可以用来处理向量和矩阵.图像.直方图等等常见的多维数据. Mat有3个重要的方法: 1.Mat mat = ...

  6. P1355 神秘大三角

    题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样例) 所有 ...

  7. 安卓Android手机直播推送同步录像功能设计与实现源码

    本文转自:http://blog.csdn.net/jyt0551/article/details/58714595 EasyPusher是一款非常棒的推送客户端.稳定.高效.低延迟,音视频同步等都特 ...

  8. MFC获取电脑硬盘序列号(附源代码)

    在新建的project里面加入一个类  即:下面一个类  GetHDSerial.cpp <code class="hljs cs has-numbering" style= ...

  9. Interpreter Pattern

    1.Interpreter模式的目的就是提供一个一门定义语言的语法表示的解释器,然后通过这个解释器来解释语言中的句子. 2.Interpreter模式结构图 3.实现 #ifndef _CONTEXT ...

  10. Android Studio 模拟器无法打开 emulator: ERROR: x86 emulation currently requires hardware

    首先要打开SDK的下载位置,找到以下陌路: android-sdk\extras\intel\Hardware_Accelerated_Execution_Manager\IntelHaxm.exe ...