题意:

  国王的士兵有n个,每个人的身高都不同,国王要将他们排列,必须一高一矮间隔进行,即其中的一个人必须同时高于(或低于)左边和右边。问可能的排列数。例子有1千个,但是最多只算到20个士兵,并且20个的情况的答案已给出。

思路:是此题HDU 4055 Number String(DP计数) 的简单版,所以看此题解就行了。数量较小,可以预先算出来。要同时考虑 <><>和><><这样的两种情况。

 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;
const int N=23;
long long dp1[N][N];
long long dp2[N][N];
long long ans[N];
int j, n;
int cal()
{
ans[1]=1;
dp1[0][1]=dp2[0][1]=1;
for(int i=1; i<N; i++)
{
if(i&1) //大于
{
for(int j=1; j<=i+1; j++)
{
dp1[i][j]=dp1[i][j-1];
dp1[i][j]+=dp1[i-1][j-1];
ans[i+1]+=dp1[i][j];
}
}
else
{
for(int j=i+1; j>0; j--)
{
dp1[i][j]=dp1[i][j+1];
dp1[i][j]+=dp1[i-1][j];
ans[i+1]+=dp1[i][j];
}
}
} for(int i=1; i<N; i++)
{
if(i&1) //大于
{
for(int j=i+1; j>0; j--)
{
dp2[i][j]=dp2[i][j+1];
dp2[i][j]+=dp2[i-1][j];
ans[i+1]+=dp2[i][j];
}
}
else
{
for(int j=1; j<=i+1; j++)
{
dp2[i][j]=dp2[i][j-1];
dp2[i][j]+=dp2[i-1][j-1];
ans[i+1]+=dp2[i][j];
}
}
}
return 0;
}
int main()
{
//freopen("input.txt","r",stdin);
cal();
int p;
cin>>p;
while(p--)
{
scanf("%d%d",&j,&n);
cout<<j<<" "<<ans[n]<<endl;
}
return 0;
}

易理解版本

 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;
const int N=;
long long dp[N][N],ans[N];
int j, n;
void cal()
{
ans[]=;
for(int k=; k<; k++)
{
dp[][]=;
for(int i=; i<N; i++)
{
if((i+k)&) //大于
{
for(int j=; j<=i+; j++)
{
dp[i][j]=dp[i][j-];
dp[i][j]+=dp[i-][j-];
ans[i+]+=dp[i][j];
}
}
else
{
for(int j=i+; j>; j--)
{
dp[i][j]=dp[i][j+];
dp[i][j]+=dp[i-][j];
ans[i+]+=dp[i][j];
}
}
}
memset(dp,,sizeof(dp) );
}
}
int main()
{
//freopen("input.txt","r",stdin);
cal();
int p;cin>>p;
while(p--)
{
scanf("%d%d",&j,&n);
cout<<j<<" "<<ans[n]<<endl;
}
return ;
}

节省一半空间和代码量的版本

 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;
const int N=;
long long dp[][N],ans[N];
int j, n;
void cal()
{
ans[]=;
for(int k=; k<; k++)
{
dp[][]=;
for(int i=; i<N; i++)
{
if((i+k)&) //大于
{
for(int j=; j<=i+; j++)
{
dp[i&][j]=dp[i&][j-];
dp[i&][j]+=dp[~i&][j-];
ans[i+]+=dp[i&][j];
}
}
else
{
for(int j=i+; j>; j--)
{
dp[i&][j]=dp[i&][j+];
dp[i&][j]+=dp[~i&][j];
ans[i+]+=dp[i&][j];
}
}
}
memset(dp,,sizeof(dp) );
}
}
int main()
{
//freopen("input.txt","r",stdin);
cal();
int p;cin>>p;
while(p--)
{
scanf("%d%d",&j,&n);
cout<<j<<" "<<ans[n]<<endl;
}
return ;
}

滚动数组版本(更少空间)

HDU 4055 The King’s Ups and Downs(DP计数)的更多相关文章

  1. HDU 4489 The King’s Ups and Downs dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4489 The King's Ups and Downs Time Limit: 2000/1000 ...

  2. HDU 4489 The King's Ups and Downs

    HDU 4489 The King's Ups and Downs 思路: 状态:dp[i]表示i个数的方案数. 转移方程:dp[n]=∑dp[j-1]/2*dp[n-j]/2*C(n-1,j-1). ...

  3. hdu 4489 The King’s Ups and Downs(基础dp)

    The King’s Ups and Downs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java ...

  4. HDU 4489 The King’s Ups and Downs

    http://acm.hdu.edu.cn/showproblem.php?pid=4489 题意:有n个身高不同的人,计算高低或低高交错排列的方法数. 思路:可以按照身高顺序依次插进去. d[i][ ...

  5. HDU 4489 The King’s Ups and Downs (DP+数学计数)

    题意:给你n个身高高低不同的士兵.问你把他们按照波浪状排列(高低高或低高低)有多少方法数. 析:这是一个DP题是很明显的,因为你暴力的话,一定会超时,应该在第15个时,就过不去了,所以这是一个DP计数 ...

  6. UVALive 6177 The King's Ups and Downs

    The King's Ups and Downs Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UV ...

  7. The King’s Ups and Downs(HDU 4489,动态规划递推,组合数,国王的游戏)

    题意: 给一个数字n,让1到n的所有数都以波浪形排序,即任意两个相邻的数都是一高一低或者一低一高 比如:1324   4231,再比如4213就是错的,因为4高,2低,接下来1就应该比2高,但是它没有 ...

  8. The King’s Ups and Downs

    有n个高矮不同的士兵,现在要将他们按高,矮依次排列,问有多少种情况. 化简为 n个人,求出可以形成波浪形状的方法数 #include <iostream> #include <cma ...

  9. HDU 4055 Number String:前缀和优化dp【增长趋势——处理重复选数】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4055 题意: 给你一个由'I', 'D', '?'组成的字符串,长度为n,代表了一个1~n+1的排列中 ...

随机推荐

  1. Gridview 每秒刷新数据

    <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="WebForm2.aspx. ...

  2. c/c++ 获取mysql数据库以blob类型储存的图片

    简单的code如下: #include <iostream> #include <fstream> #include <sstream> #include < ...

  3. OVN简单部署

    部署OVN实验环境 网络拓扑 ### Central节点 # cat ifcfg-eth0 TYPE=Ethernet BOOTPROTO=static DEFROUTE=yes PEERDNS=ye ...

  4. 根据rowid删除最新数据(rowid最大为最新数据)(转)

    https://blog.csdn.net/liuyuehui110/article/details/43524379

  5. HttpClient 应用案例揭破应用Discuss论坛登录

    闲来无事,写了一个对discuss论坛登录的案例,初次上场按照以前的惯例没成功,见过抓包分析discuss论坛成功完成,废话不多说 直接上代码. 1:winform 做客户端,添加HttpClient ...

  6. 用户角色权限查询添加bug集锦 用户密码加密 MD5 加盐 随机盐 spring的加密bcrypt

    package cn.itcast.encode; import org.apache.commons.lang3.RandomStringUtils; import org.springframew ...

  7. 用户登录之记住密码 Cookie实现

  8. SQL SERVER Study

    1. SQL SERVER Install    可以免费试用天.最新的是2014版本.   2. Attach, Detach 可以添加或去掉已有的数据库文件.     数据库文件的格式是: .md ...

  9. Huber鲁棒损失函数

    在统计学习角度,Huber损失函数是一种使用鲁棒性回归的损失函数,它相比均方误差来说,它对异常值不敏感.常常被用于分类问题上. 下面先给出Huber函数的定义: 这个函数对于小的a值误差函数是二次的, ...

  10. 如何使用localStorage?

    首先使用localStorage的时候,我们需要判断浏览器是否支持localStorage这个属性. if(!window.localStorage){ alert("浏览器支持locals ...